
Adaptive Rubrics
Marco Carmosino
marco@ntime.org

Simon Fraser University
Burnaby, British Columbia, Canada

Mia Minnes
minnes@eng.ucsd.edu

University of California San Diego
La Jolla, California

ABSTRACT
Grading is a notoriously difficult and time-consuming part of teach-
ing. For open-ended programming, mathematical, or design prob-
lems, assigning consistent scores and giving useful feedback can be
very challenging. Large classes compound this difficulty. Adding
TAs to the team can help parallelize the process but may impede
grading consistency and quality. We present an adaptive rubric cre-
ation and application process to enable high-quality responses to
student work, at scale. This process uses exploratory data analysis
to discover common patterns in student responses to a problem,
then tailors a rubric and feedback to address these patterns. Our
method is supported by current grading tools, which allow calcu-
lation of the simple population-level statistics we need to extract
meaningful features from a corpus of student work. In this case
study, we describe using adaptive rubrics for a discrete math class
for CS majors: the grading team found that this process produced
concrete and transparent justifications of student scores and that
it facilitated conversations around grading that were grounded in
course learning objectives and values.

CCS CONCEPTS
• Social and professional topics→ Student assessment; • Ap-
plied computing→ Learning management systems;

KEYWORDS
Grading, rubrics, educational data mining, large classes

ACM Reference Format:
Marco Carmosino and Mia Minnes. 2020. Adaptive Rubrics. In The 51st
ACM Technical Symposium on Computer Science Education (SIGCSE ’20),
March 11–14, 2020, Portland, OR, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3328778.3366946

1 ATTENTION IS VALUABLE AND LIMITED
The more complex a problem, the more difficult it is to grade. Grad-
ing involves both evaluation of specific student work and commu-
nicating with students about this evaluation. Grading decisions
should reflect the extent to which student work achieves the cri-
teria for the assignment, informed by the priorities of the course.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’20, March 11–14, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6793-6/20/03. . . $15.00
https://doi.org/10.1145/3328778.3366946

One of the difficulties of grading is making these decisions consis-
tently. When classes simultaneously scale up and assign complex
problems — as in computer science (CS) assignments that require
rich responses like proofs, design documents, or architectures —
it is common to use rubrics and to enlarge the grading team (by
adding TAs or student graders). Typically, consistent application of
the rubric requires multiple rounds of instructor-grader conversa-
tions, since the values of the course (and their instantiation as point
allocations) are ultimately the instructor’s responsibility. In this
project, we propose a grading framework with limited, high-utility
grader-instructor interaction rounds. Through this process, a rich
lexicon emerges that serves two important purposes:

• Articulate learning objectives and gaps: Construct effec-
tive and efficient feedback for students to facilitate learning.

• Assess population: Cluster common approaches to the as-
signment and identify common misconceptions using suc-
cinct and justifiable properties of student work.

We reuse a generic rubric, by adapting and customizing it for each
assignment and each set of students in a principled, data-driven
process. In these adaptive rubrics, meta-data accompany rubric
items to encode rich information about assessment decision bound-
aries used to classify student submissions. In tandem, we record
student-facing comments using concrete vocabulary and advice
for incremental improvement. This framework is inspired by ex-
ploratory data analysis. Instead of pre-populating a rubric with
hypothetical predictions about student work, the actual patterns
in student responses inform the definition of rubric items. Point
assignments are based on assessing common responses using the
course learning outcomes. Though we describe our method in the
context of a CS Discrete Math course, it could be adapted to any
course or major.

2 BACKGROUND AND RELATEDWORK
Grading serves two important purposes: feedback on student work
can enhance learning [5, 11, 14] and the scores assigned to student
work can certify whether students demonstrate required learning
outcomes [22, 23]. Balancing these important functions of grading
with practical constraints is hard: SIGCSE members lament chal-
lenges and crowd-source grading advice [1, 2]; Kumar’s opinion
piece in ACM Inroads cautions against the efficiency of auto-graders
in the face of uncertain impacts on student learning [10].

In CS, open-ended problems often combine some objectively
grade-able components (does the submitted code pass test cases? is
each step of the candidate proof an application of valid reasoning?)
with subjective judgments informed by community values (are
functions modular? is the proof elegant?). Grading with rubrics can
help evaluations be fair, consistent, and reliable [3, 9, 18].

SIGCSE ’20, March 11–14, 2020, Portland, OR, USA Marco Carmosino and Mia Minnes

Rubrics typically describe criteria for student work with asso-
ciated levels of achievement for each criterion. Crating rubrics
tailored to specific assignments may be time-consuming [4, 6]. For
example, to design a reliable rubric for a programming assignment,
Stegeman iterated a candidate rubric through several stages of re-
view and grading by multiple instructors until enough detail could
be incorporated [21]. Examples in the Physics (e.g. [12, 16]) and
Mathematics (e.g. [8, 13]) education literature demonstrate that
opinions around justification, rigor, and beauty inform grading
choices (even in the presence of rubrics) and can lead to inconsis-
tent student assessment. Grading with adaptive rubrics is designed
to facilitate consistency while making the process efficient enough
to be practical in the weekly or bi-weekly assignment cadence of
a typical course. Our adaptive process refines the exam grading
by clustering method of [15]; in the context of formative weekly
homework, more granular feedback to the students is appropriate.

We also take inspiration from the open source community norms
for structuring discussion of complex source-code artifacts on text-
only mailing lists [17]. Through the adaptive rubric process, pre-
cise, informative, and explicit questions are formulated for grader-
instructor conversations, and answers are recorded.

The adaptive rubric grading process is supported by emerging
educational technology. Learning management systems (LMS) and
other tools now facilitate (many aspects of course delivery, includ-
ing) grading. Vocareum, Canvas, Blackboard, and Gradescope each
have mechanisms for creating, editing, and applying rubrics to
student submissions. During this case study, we used Gradescope
[7] because our institution has a site license and the students are
comfortable with it. Students uploaded their homework submis-
sions and course TAs read, gave feedback, and assigned scores
through the Gradescope interface. Any LMS that supports marking
assignments using custom rubrics is compatible with our process.

3 CASE STUDY
We used the adaptive method to grade one problem per homework
in a 10-week undergraduate Discrete Mathematics for CS course at
a large public research-intensive institution in the US. This course
is required for all CS majors and is typically taken by freshmen and
sophomores. It is taught in relatively large lectures, with approxi-
mately 150 students per lecture section andmultiple lecture sections
offered each term. A central learning outcome of the course is pre-
cise communication about mathematical objects, algorithms, and
arguments. Weekly assignments require students to fluently trans-
late between different notations and levels of formality, critically
evaluate claims, and provide evidence for arguments.

During Spring 2019, each of the eight homework assignments
included at least one open-ended question. We selected the problem
that seemed to require the richest response (usually a proof) for
the adaptive rubric grading method. This case study focuses on
the grading of a proof by structural induction about the linked
list data structure. This question was assigned two-thirds of the
way through the course. There were 233 distinct submissions: 296
students submitted work, with some working in pairs. One TA was
assigned to grade all submissions for this problem. This TA had
been developing adaptive grading across five previous terms and
had significant experience grading proofs in general. They spent

approximately 8 hours grading this problem, over one week. Below,
we include the relevant definitions and question.

Definition 3.1 (Linked Lists). The set of linked lists of natural
numbers L is defined by:

Basis Step: [] ∈ L
Recursive Step: For l ∈ L and n ∈ N, (n, l) ∈ L

Definition 3.2 (List Functions). The function len : L → N that
computes the length of a list is:

len(ℓ) =

{
0 if ℓ = []

1 + len(ℓ′) if ℓ = (n, ℓ′) where n ∈ N and ℓ′ ∈ L

Definition 3.3 (List Increment). The function inc : L → L that
adds 1 to each element of a linked list is defined by:

inc(ℓ) =

{
[] if ℓ = []

(1 + n, inc(ℓ′)) if ℓ = (n, ℓ′) where n ∈ N and ℓ′ ∈ L

Definition 3.4 (List Sum). The function sum : L → N that sums
all the elements of a list is defined by:

sum(ℓ) =

{
0 if ℓ = []

n + sum(ℓ′) if ℓ = (n, ℓ′) where n ∈ N and ℓ′ ∈ L

Homework Question: Prove or disprove the following state-
ment. You may not use · · · or

∑
notation:

∀l ∈ L (sum(l) + len(l) = sum(inc(l)))

Using these definitions, students practice the “full loop” of com-
munication and reasoning skills which are a core learning outcome
of the course. By disallowing the use of · · · (dots) or Σ (summation)
notation, the question exercises technical facility with and under-
standing of induction, another core learning outcome of our course.
The question is difficult for students to complete. They must take
multiple steps to even understand what is being asked and to realize
that the statement is true. The correct solution is then a proof by
induction, which is more abstract than earlier proof techniques.

The question is difficult for instructors to grade. Because re-
sponses are completely free-form, we must recover the intended
proof from whatever text students submit. Our rubrics need take
both correctness and clarity into account; but how?

In this experience report, we detail the grading of this specific
question as an example of the adaptive rubric process. We reflect
on our experience using this process, highlighting the ways in
which it improved the quality and consistency of grading decisions:
we were able to develop a rich and specific lexicon, informed by
actual student data, to discuss the nuances of the space of student
responses and then make grading judgements informed by both
these data and course learning objectives and values.

3.1 Generated Initial Tags
In the first phase of the adaptive rubric process, we recorded fea-
tures and statistics to describe the specific question and how stu-
dents responded to it by assigning tags to student responses. Each
tag has three parts: a name, a description, and a list of justifications.
Each justification is a short sentence that connects specific text in
a response to the tag. For each new tag we defined, we created a

Adaptive Rubrics SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

(placeholder) rubric item in Gradescope with its name and descrip-
tion, and we used a text editor (Bear [19]) that supports outlining
features to keep track of its list of justifications.

We began with a sample canonical solution (generated by the
course instructor) and a generic rubric for induction problems:

5 pts Proof by structural induction clear, complete, and correct:
variables clearly declared, base case and induction step each
labelled, assumptions and goals clearly articulated, calcula-
tions well supported and explained.

4 pts Proof by induction mostly clear, complete, and correct.
3 pts Proof by induction has many required components but

missing major component, e.g. basis step missing or wrong,
or IH not stated or used, or wrong proof.

2 pts Some indication of structure of proof by induction but
main arguments missing or irrelevant.

0 pts Incorrect or blank.

Tagged the Canonical Solution. The grader generated tags describ-
ing the canonical solution, see Table 1, along with short justifica-
tions. These tags formed a “checklist” of predicates aligned with the
5 pts generic rubric item. The process of carefully exploring “deci-
sion boundaries” associated with each tag for the specific problem
being graded drives adaptive grading.

Tag Description Kept
#IT Indicate statement is true ⋆

#IH Clearly indicate a correct inductive hypothesis ⋆

#BS Clearly indicate a correct basis step ⋆

#CCB Correct conclusion from basis step
#RS Clearly indicate a correct recursive step ⋆

#CCR Correct conclusion from recursive step
#CC Clear and correct calculations overall ⋆

#LD Correct usage and reference to list definitions ⋆

#MI Mention “induction” ⋆

#CS Correct inductive structure
Table 1: Tags generated from canonical solution. The Kept
column flags whether this tag was used in the final rubric.

At this phase of grading, the only justification in the list of
justifications for each tag was the specific way features appeared
in the canonical solution. The next stage of the process added new
justifications representing alternate approaches.

Tagged a Sub-Sample. The grader drew a random sub-sample (about
25%) of student submissions to continue the initial tagging pro-
cess; this sample-size seems (empirically) to ensure that the Initial
Tags are expressive enough to produce a good rubric. We wrote a
javascript bookmarklet for the Gradescope “list assignments” page
to open a random subset of assignments in new browser tabs. For
each response in this sub-sample, we attempted three tasks:

• Assigning existing tags. We attempted to fully describe
the response using existing tags, adding justifications to the
list to record variations in how student work specifically
exhibited the tag. For example, two different formulations of
the induction hypothesis are correct for this statement; each
would be a different justification in the list for the #IH tag.

As our understanding of the patterns in student responses
shifted, the justifications for tags evolved and sharpened.

• Identifying Mistakes. For responses that didn’t meet the 5
pts criteria, we created tags (referencing the generic rubric,
and including specific justifications), see Table 2, to identify
exactly why a response was lacking. We were not scoring
the responses during this phase; we were simply asking why
they were wrong and capturing the answer with a tag.

Tag Description Kept
#MIH Malformed inductive hypothesis
#MEq Malformed equational reasoning ⋆

#ExRC One-element example as recursive step
#?LDC Link a definition without case OK?
#??? Totally baffling

Table 2: Tags generated from sub-sample. The Kept column
flags whether this tag was used in the final rubric.

The tag #MIH described inductive hypotheses with serious
type errors or other failures to parse: the recorded justifi-
cations for this tag distinguished between these cases. The
other “mistake tags” in Table 2 will be described below to
illustrate additional stages of the process.

• Concentrating Uncertainty. Sometimes, tags flagged a
specific grading question that appeared in multiple student
assignments. For example, the question tag #?LDC recorded
confusion about the decision boundary for the tag #LD. The
tag #LD meant that the definitions for linked lists given in
the problem were clearly cited and correctly used to jus-
tify any manipulation of list constructions. Some student
submissions referenced these definitions but did not specify
which part of the definition (base case or recursive step) was
germane to the justification. Did a response with some, but
not fully detailed, use of the list definitions earn the #LD tag?
The tag #?LD and other question tags recorded this question
for subsequent grader-instructor conversations.
Sometimes, it was very difficult to understand student re-
sponses. If the grader could not make sense of a submission
quickly (our threshold was under a minute), they assigned
the special #??? tag and did not track justifications. This
“timeout” let us focus on overall patterns without getting
stuck attempting to decode bizarre responses. Mercifully, the
#??? tag is not too common. For this case study, about 12
assignments of the 58 in the sub-sample received that tag.
Grading of submissions tagged with #??? was deferred until
the very end of the grading process, at which point course
staff have a better chance of interpreting these responses
and giving students meaningful individualized feedback.

A heuristic for setting the initial sample size is to count how
many responses have been observed without making a new tag.
The larger this count, the more likely that the tag-set is “stable.”

Computed Population Statistics and Pruned Tags. Once the sub-
sample was tagged, we viewed aggregate population statistics about
the occurrences of each tag. The statistics page for each question in

SIGCSE ’20, March 11–14, 2020, Portland, OR, USA Marco Carmosino and Mia Minnes

a Gradescope assignment displays bar charts plotting the frequency
of each tag. As soon as we consulted these charts, patterns emerged.

It was clear that the #?LDC tag was common enough to warrant a
conversation between the grader and the instructor. Other “question
tags” that had arisen (not listed here) either had too few occurrences
to be a discussion priority, or could be resolved by the grader after
working through enough of the grading.

We also pruned other tags: #CCB, #CCR, and #CS were dropped
at this point. These “correct conclusion” and “correct structure”
tags were perfectly correlated with other tags so they added no
information. The pruning of tags is specific to the actual question
being graded. For the property of linked lists in this homework,
and this specific class of students, whether students articulated the
IH correctly was perfectly correlated with successfully applying it.
This may not be the case with other induction problems.

Another tag was pruned at this stage, for a different reason. Only
a small fraction of the sub-sample was tagged malformed inductive
hypothesis #MIH. For the most part, students produced a correct
IH or no IH at all. This observation shed light on students’ general
understanding of linked lists and induction and was discussed by
the instructional team in the next phase of the process.

3.2 Made Course-Values Decisions
Once the sub-sampled responses had been tagged and summarized,
the grader formulated a concise and pointed list of questions to
refine the decision boundaries for tag applications. These ques-
tions were discussed among course staff. Often, resolving questions
meant classifying what should constitute a mistake: establishing
these course norms is the responsibility of the instructor. In our
example, the instructor determined that “deep references” into re-
cursive definitions by cases were adequately emphasized by other
assignments and so responses tagged #?LDC could instead be tagged
#LD (and the tag #?LDC removed).

The common tag #MEq prompted a longer discussion. This tag
represented student submissions which structured proofs by first
asserting the desired conclusion, and then rewriting it by manipulat-
ing both sides of the equation. This approach often looks deceptively
similar to the goal-rewriting proof strategy, except that students
tend to omit any indication that what is being rewritten is the goal
(and has not yet been established). Without such caveats, this type
of reasoning can quickly become circular. Since these submissions
indicated an underlying misconception about the different roles
of premises and goals in proofs, the instructor decided that #MEq
would be reflected in the final rubric as a mistake.

3.3 Developed a Tree Rubric
We then built a decision tree to encode how different features of
student responses (represented by tags) determine scores for these
responses, see Figure 1. The grader drafted the tree and then worked
with the instructor to associate point values to each leaf node.
Alternative grading policies correspond to different decision trees.
Comparing these trees helped resolve grading decisions efficiently.
For example, we needed to decide if mistakes about equational
reasoning and list definition justifications compound: would an
assignment tagged #MEq and not tagged #LD score 4 points or 3
points? In other words, do we connect the F child of the ¬#MEq

#IT

¬#MEq1p

AND(#BS, #RS,
#IH, #LD, #CC)

4p

AND(#BS, #RS, #IH, #LD, #CC)

5p

F T

F

T

T

AND(#BS, #RS, #IH, #CC)

T
F

4p

T

MAJ(#IH, #BS, #RS) AND #CC

F

3p

T

#MI

2p

1p

F

T
F

F

Figure 1: The decision tree from our case study. Labels for
nodes are functions of the tags fromTable 1 and Table 2. The
two nodes with double-outline have the same decision label
on separate paths. They differ from the node one level down
on the tag #LD.

node to the AND node or the MAJ node? Formulating this grading
policy question using trees helped us settle it in under 15 minutes.

The grader transformed each justification for a high-frequency
mistake tag into standardized comments that would be applied to
student assignments. The distinction between justification and com-
ment is important: the justification is an internal tool among course
staff which may use jargon to precisely define relevant features;
the comment is a student-facing message intended to help them
learn from feedback. To quickly deploy comments during the grad-
ing process, we stored them in TextExpander [20], a program that
automatically replaces typed abbreviations with pre-determined
strings. We made an abbreviation for each (tag, justification, com-
ment) tuple that expanded out into the appropriate comment. In
this way, we were able to quickly annotate student work with long
and consistent comments that were standadized based on the tags.

Adaptive Rubrics SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

3.4 Applied the Tree Rubric
To actually assign scores, we randomly ordered all the student
responses and visited each one in a final pass. For each response,
we performed three steps:

(1) Assigned tags to the response. Even if the response was
part of our initial sub-sample, we re-assigned tags using the
justifications from the end of the Initial Tagging phase.

(2) Evaluated the Tree Rubric. Using the tags, we walked the
decision tree to seewhich leaf the current responsewould fall
into to determine the relevant student-facing rubric items.

(3) Applied the comments. We composed and applied long-form
feedback by concatenating standard comments associated
with each tag (and occasionally also custom prose).

The leaves in the decision tree map to student-facing rubric items
and descriptions. This rubric is more detailed than the generic refer-
ence rubric for induction problems, and certain levels are split into
separate items to highlight common mistakes. The number of sub-
missions (and the percentage of total submissions this represents)
for which each item was applied is listed below.

5 pts Correct: Indicates the statement is true. Proves it using
structural induction with a clearly identified basis step and
recursive step, with the correct IH. Uses clear and correct
calculations and references to definitions in both steps, in-
cluding using the IH, to conclude both. (28 of 233; 12%)

4 pts Partial Credit: Correct except for malformed equational
reasoning. (60 of 233; 26%)

4 pts Partial credit: Indicates the statement is true. Proof has
correct structure but mis-applies or doesn’t reference key
definitions of lists to justify basis and recursive steps. (9 of
233; 4%)

3 pts Partial credit: Indicates the statement is true. Proof has
the right structure aside from missing one key component
(only has one step rather than basis and recursive, missing
IH, doesn’t apply or mis-applies IH) that makes the argument
incomplete or inconsistent. (42 of 233; 18%)

2 pts Partial credit: Indicates the statement is true, and applies
a partially working proof that mentions induction. (47 of
233; 20%)

1 pt Partial credit: Indicates the statement is true, but only
applies a witness or other inapplicable proof strategy (36 of
233; 15%)

1 pt Partial credit: Indicates the statement is false, and proceeds
by (incorrect) counterexample. (5 of 233; 2%)

0 pts Incorrect or blank. (8 of 233; 3%)

An example application of comments appears in Figure 2. The
two comments are associated with the tags for this student response:
the comment “which part” comes from #LD and the comment about
equations comes from #MEq. Notice that rubric item descriptions
don’t explicitly mention list definitions (the tag #LD). This is an
example of how tags are never “wasted,” even if they don’t affect
the final score; we can still map the relevant comments into student
assignments and give them consistent and useful feedback.

Once all other student submissions were graded, the grader
considered each response tagged #???, writing customized feedback
and assigning a score. These idiosyncratic responses were easier to

Figure 2: Sample student work with comments (in highlight
boxeds) based on tags, as seen by students in Gradescope.

handle consistently now that the grader had worked through all
the patterns of student responses.

Before publishing the grades to students, the grader removed
placeholder rubric items for tags in Gradescope so that only the
final rubric was visible. The grader spent approximately 1.5 hours
on the pre-grading phases of the process (generating initial tags,
discussing with the instructor, and creating the tree rubric) and 6.5
hours applying the rubric and comments to student submissions.

3.5 Extracted Insights and Acted on Them
Our careful analysis of student responses is useful even if the stu-
dents never look at their grades. For example, the tag #ExRC flagged
the mistake where the correct recursive argument was performed
on a two-element list instead of the full generality required in the
recursive step. While #ExRC was both serious and widespread, it
was correlated with other tags and so was pruned before the cre-
ation of the tree rubric. However, we spent time in class explaining
why this type of “recursive” step is actually just an example, not
a component of an inductive proof. Targeting the misconceptions
about structural induction that led to this error helped reduce its
appearance in follow-up assignments.

Even though difficult questions often generate many regrade
requests, there were only 2 regrade requests for this question (out
of 233 submissions). One request was a simple student misunder-
standing. The other was grader error: the student response had
a particularly egregious example of the #ExRC mistake and this
caused a cascading failure: the grader, distracted by this error, set
#IH to false even though the student had a correct inductive hy-
pothesis. Responding to the regrade request was quick and easy: we
simply reevaluated the tree rubric, setting #IH to true. Confidently
addressing a small number of regrade requests helps restore any
eroded trust students may feel from grading errors, and saves time.

For context, across the eight assignments in this class, the mean
regrade count for ad-hoc graded problems with non-zero regrade
requests was 2.3 (median = 2) and the mean number of regrade
requests for adaptive graded problems was 2.2 (median = 2). Since

SIGCSE ’20, March 11–14, 2020, Portland, OR, USA Marco Carmosino and Mia Minnes

we picked the most complex problems in each assignment for adap-
tive grading, it would not be surprising if these problems generated
higher than average regrade requests. Instead, the conditional re-
grade rate for the adaptive graded problems was very close to that
of ad-hoc graded simpler problems.

4 ADAPTIVE RUBRIC CONSTRUCTION
The objective is to consistently justify grades using (i) readily ob-
servable features of student responses and (ii) course norms. The
prerequisites are a reference generic rubric Q for the question type,
a sample canonical solution, and a system for traversing student
assignments and tracking tags, such as Gradescope. Summarizing
and generalizing the case study, we get the method below.

(1) Generate Initial Tags
(a) Tag the Canonical Solution. Grade the canonical solu-

tion according to the generic rubricQ . Askwhy orwhy not
each rubric item applies. Describe the answers with sim-
ple Boolean predicates, along with justifications specific
to this assignment: these are the initial tags.

(b) Tag a Sub-Sample. For each response r in a random sub-
sample of student responses, perform three tasks:
• Assign Existing Tags. Assign applicable tags from the
existing collection to r . If necessary, add or edit a justi-
fication for each tag assigned.

• Identify Mistakes. If r is not a “perfect” response, use the
generic rubric Q and ask why or why not items from
that rubric were applied; the answers define new tags.
This mistake identification is dual to how the canonical
solution induces tags that explain correctness.

• Concentrate Uncertainty: Tag specific questions about
the rubric (eg, #?LDC) and use a “catchall” tag (eg, #???)
for responses that take too long to classify.

(c) Compute Population Statistics and Prune Tags. Use
a histogram of tag occurrence counts to identify common
mistakes and solution techniques. Prune tags that don’t
carry enough information to help cluster responses.

(2) Make Course-Value Judgments. Reference course learn-
ing outcomes to answer accumulated questions (made con-
crete by the recorded justifications) in popularity order.

(3) Develop a Tree Rubric. Using tags as Boolean variables,
write a decision tree1 whose leaves are Q-realizations. Tags
representing essential features or catastrophicmistakes should
be placed early in the tree to reflect their value. Write a
student-facing comment for each justification for each tag.
Assign scores to the leaves of the decision tree.

(4) Apply the Tree Rubric. Clear all applied tags except #???.
For each response (in random order) without this tag: (1) ap-
ply tags, (2) evaluate the tree rubric and assign the resulting
score, and (3) mix together and apply the pre-written com-
ments. Then, revisit assignments bearing the exceptional
#??? tag. The rich mental context from passing through the
rest of the population will help you understand and provide
sensible feedback for long tail work.

1Any classifier may be selected, but Decision Trees are a “sweet spot” of expressive
power and interpretability. For simpler problems, additive models may be preferable.

(5) Extract and Act on Insights. Repeat the population sta-
tistics analysis from the initial sub-sample. Use common
patterns and mistakes to tailor future student interactions.

5 BENEFITS AND LIMITATIONS
5.1 Structuring the grading workflow
The adaptive rubric process decouples fundamentally unrelated
cognitive activities: pattern recognition and value judgment. In
the sub-sampling and tagging phase, the grader observes subtle
differences and patterns in student responses, while recording the
statistical structure of the data so that this initial effort isn’t wasted.
By starting with exploratory data analysis to describe the student
responses and deferring value judgments, graders are more likely
to make progress on their grading tasks with fewer backtracking
detours: these detours cost the grader in both time and cognitive
load. Future work could use experimental methods to assess this
process rigorously.

5.2 Synchronization barriers
The structure of the adaptive rubric grading process addsmilestones
during grading where decisions and communication are batched.
These points are synchronization barriers where the grader and
senior course staff must make decisions together. Requiring that
these barriers are unlocked relatively early in the grading process
means graders need to start well in advance of the grading deadline
and avoid “marathon” grading. This may be a good thing.

Our process has a single grader work on each problem, commu-
nicating only with senior course staff. In addition to recording why
tags are assigned (via justifications), this grader develops implicit
procedural knowledge of how to assign tags. Future work could
develop methods to synchronize tagging procedures across mul-
tiple graders; we could scale out the process while maintaining
consistency at some cost in communication overhead.

5.3 Tool support for grading
In the case study, we mentioned three different software tools used
to support the adaptive rubric process: Gradescope, Bear, and Tex-
tExpander. Other learning management systems, text editors, and
text snippet managers may work well too. To our knowledge, there
is no single tool that supports tagging with internal justifications
and external comments and calculates population-level statistics.

6 CONCLUSIONS
In this experience report, we contributed a new framework for
structured grading of open-ended problems, along with a case study
of its use in an undergraduate CS course. Grading with adaptive
rubrics lets us focus on deeply understanding student work in
aggregate before deciding on point values. This approach yields
insights on the population-level distribution of student mastery of
the material. The meta-data produced during this process create
an efficient shorthand among the course staff at the same time as
helpful, explanatory feedback to students. Aligning assessment with
learning outcomes, the adaptive rubric process extract evidence of
student learning and allows the assessment process to inform the
shape of the course itself.

Adaptive Rubrics SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

ACKNOWLEDGMENTS
The authors thank the rest of the instructional team for the class
in Spring 2019, specifically Joe Politz for helpful conversations.
We also thank the anonymous reviewers, whose comments and
questions improved the presentation and clarity of this manuscript.

REFERENCES
[1] 2019. Giving copious feedback on coding assignments in reasonable time. SIGCSE

members mailing list, August 22, 2019.
[2] 2019. Python autograders. SIGCSE members mailing list, August 20, 2019.
[3] Heidi Goodrich Andrade. 2005. Teaching With Rubrics: The Good, the Bad, and

the Ugly. College Teaching 53, 1 (2005), 27–31. https://doi.org/10.3200/CTCH.53.
1.27-31

[4] Veronica Cateté, Erin Snider, and Tiffany Barnes. 2016. Developing a Rubric
for a Creative CS Principles Lab. In Proceedings of the 2016 ACM Conference on
Innovation and Technology in Computer Science Education (ITiCSE ’16). ACM, New
York, NY, USA, 290–295. https://doi.org/10.1145/2899415.2899449

[5] Carol Evans. 2013. Making Sense of Assessment Feedback in Higher Education.
Review of Educational Research 83, 1 (2013), 70–120. https://doi.org/10.3102/
0034654312474350

[6] Sue Fitzgerald, Brian Hanks, Raymond Lister, Renee McCauley, and Laurie Mur-
phy. 2013. What Are We Thinking when We Grade Programs?. In Proceeding of
the 44th ACM Technical Symposium on Computer Science Education (SIGCSE ’13).
ACM, New York, NY, USA, 471–476. https://doi.org/10.1145/2445196.2445339

[7] Gradescope. 2019. Gradescope. http://gradescope.com
[8] Matthew Inglis andAndrewAberdein. 2014. Beauty Is Not Simplicity: AnAnalysis

of Mathematicians’ Proof Appraisals. Philosophia Mathematica 23, 1 (07 2014),
87–109. https://doi.org/10.1093/philmat/nku014

[9] Anders Jonsson and Gunilla Svingby. 2007. The use of scoring rubrics: Reliability,
validity and educational consequences. Educational Research Review 2, 2 (2007),
130 – 144. https://doi.org/10.1016/j.edurev.2007.05.002

[10] Deepak Kumar. 2018. REFLECTIONS: Tools from the Education Industry. ACM
Inroads 9, 3 (Aug. 2018), 22–24. https://doi.org/10.1145/3233246

[11] Anastasiya A. Lipnevich, Leigh N. McCallen, Katharine Pace Miles, and Jeffrey K.
Smith. 2014. Mind the gap! Students’ use of exemplars and detailed rubrics
as formative assessment. Instructional Science 42, 4 (2014), 539–559. https:
//doi.org/10.1007/s11251-013-9299-9

[12] Emily Marshman, Ryan Sayer, Charles Henderson, Edit Yerushalmi, and Chan-
dralekha Singh. 2018. The challenges of changing teaching assistants’ grading
practices: Requiring students to show evidence of understanding. Canadian
Journal of Physics 96, 4 (2018), 420–437. https://doi.org/10.1139/cjp-2017-0030

[13] Robert C. Moore. 2016. Mathematics Professors’ Evaluation of Students’ Proofs:
A Complex Teaching Practice. International Journal of Research in Undergraduate
Mathematics Education 2, 2 (01 Jul 2016), 246–278. https://doi.org/10.1007/
s40753-016-0029-y

[14] Ernesto Panadero and Anders Jonsson. 2013. The use of scoring rubrics for
formative assessment purposes revisited: A review. Educational Research Review
9 (2013), 129 – 144. https://doi.org/10.1016/j.edurev.2013.01.002

[15] Cassandra Paul, Wendell Potter, and Brenda Weiss. 2014. Grading by Response
Category: A simple method for providing students with meaningful feedback
on exams in large courses. The Physics Teacher 52, 8 (2014), 485–488. https:
//doi.org/10.1119/1.4897587

[16] Heather L. Petcovic, Herb Fynewever, Charles Henderson, Jacinta M. Mutam-
buki, and Jeffrey A. Barney. 2013. Faculty Grading of Quantitative Problems: A
Mismatch between Values and Practice. Research in Science Education 43, 2 (April
2013), 437–455. https://doi.org/10.1007/s11165-011-9268-8

[17] Eric Steven Raymond and Rick Moen. 2014. How to ask questions the smart way.
http://www.catb.org/~esr/faqs/smart-questions.html

[18] Y. Malini Reddy and Heidi Andrade. 2010. A review of rubric use in higher
education. Assessment & Evaluation in Higher Education 35, 4 (2010), 435–448.
https://doi.org/10.1080/02602930902862859

[19] Shiny Frog. 2019. Bear. https://bear.app/
[20] Smile. 2019. TextExpander. https://textexpander.com/
[21] Martijn Stegeman, Erik Barendsen, and Sjaak Smetsers. 2016. Designing a Rubric

for Feedback on Code Quality in Programming Courses. In Proceedings of the
16th Koli Calling International Conference on Computing Education Research (Koli
Calling ’16). ACM, New York, NY, USA, 160–164. https://doi.org/10.1145/2999541.
2999555

[22] Briana E. Crotwell Timmerman, Denise C. Strickland, Robert L. Johnson, and
John R. Payne. 2011. Development of a ‘universal’ rubric for assessing un-
dergraduates’ scientific reasoning skills using scientific writing. Assessment &
Evaluation in Higher Education 36, 5 (2011), 509–547. https://doi.org/10.1080/
02602930903540991

[23] Todd Zimmerman. 2017. Grading for Understanding – Standards-Based Grading.
The Physics Teacher 55, 1 (2017). https://doi.org/10.1119/1.4972500

