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Abstract

Let C be a complexity class and A be a language. The statement “A /∈ C” is a separation of A from C.
A separation is constructive if there is an efficient algorithm called a refuter that prints counterexamples
to the statement “M decides A” for every C-algorithm M . Concretely, refuters witness errors of M on A
by printing, on input 1n, an n-bit string x such that M(x) ̸= A(x). Many recent breakthroughs in lower
bounds and derandomization, like the algorithmic method [13], rely on constructive separations as a core
component. Chen, Jin, Santhanam, and Williams [11] studied the consequences of constructivizing clas-
sical non-constructive lower bounds in complexity theory. They showed that (1) constructivizing many
known separations would imply breakthrough lower bounds, and (2) some separations are impossible to
constructivize.

We study a more general notion of “efficient refutation” in terms of C-Student-Teacher Games, where
the C-refuter (Student) is allowed to adaptively propose candidate counterexamples xi to an omniscient
Teacher. If xi fails to witness an error, Teacher reveals a counterexample yi to the statement “xi is a
counterexample to the statement ‘M decides A’ ” — the nature of yi depending on how the separated
language A and complexity class C are defined. We show:

• If there is a P-Student-Teacher constructive separation of Palindromes from one-tape nondetermin-
istic O(n1+ε) time [38], then NP ̸⊂ SIZE[nk] for every k.

• If there is a uniform AC0[qpoly]-Student-Teacher protocol generating truth tables of super fixed
polynomial circuit complexity, then P ̸= NP.

• There is no P-Student-Teacher protocol which for infinitely many c > 0, generates high-Knc

strings.

Our results imply a conditional separation of Jeřábek’s theory VAPC from V1, a theory equivalent to
Buss’s theory S1

2. This improves and significantly simplifies the work of Ilango, Li, and Williams [24],
who separate VAPC from the weaker theory VPV under the existence of indistinguishability obfuscation.
We do not use cryptographic assumptions in our separation. Instead we introduce a natural and plausible
conjecture on the uniformity of proofs in bounded arithmetic, inspired by Kreisel’s Conjecture in logic.
We believe this conjecture to be of independent interest.



1 Introduction1

Constructive lower bounds are a key concern of complexity theory. We know that hard functions exist,2

but not how to exhibit them efficiently. There are two ways to formalize the notion of constructivity. The3

algorithmic perspective asks for the computational complexity of searching for witnesses to a complexity4

lower bound, like hard truth tables. The proof-theoretic perspective asks for the weakest logical theory that5

proves complexity lower bounds. This paper obtains new results about both formulations of constructivity6

and the relationship between them.7

In particular, we study the computational model of Student-Teacher Games, which links the proof-8

theoretic and algorithmic perspectives on constructivity. Roughly, if a complexity lower bound LB is provable9

in a “bounded” logical theory, then “efficient” Student-Teacher games witnessing LB follow. We obtain new10

results about Student-Teacher games witnessing: lower bounds for deciding Palindromes, existence of time-11

bounded Kolmogorov-random strings, and existence of Boolean functions of high circuit complexity. From12

these results, we conditionally derive (1) consequences about the provability of these statements and (2)13

separations of expressive and well-studied logical theories. We structure our introduction as follows:14

(i) Building on prior work studying the consequences of algorithmic constructivity in complexity theory15

[11, 27, 49], we show that efficient Student-Teacher games witnessing known complexity lower bounds16

imply breakthrough lower bounds.17

(ii) We scrutinize the relationship between algorithmic constructivity and proof-theoretic constructivity.18

The natural translation into bounded arithmetic of complexity-theoretic statements that mention “poly-19

nomially bounded resources” results in a schema of logical sentences, one for each fixed polynomial.20

This disrupts the well-known connection between provability of lower bounds and witnessing Student-21

Teacher games.22

(iii) We identify a new family of conjectures called Witnessing Hypotheses for Uniform Proofs which give23

Student-Teacher witnessing from a schema of lower bounds. We demonstrate that these conjectures24

are well-founded, and connect them to the famous Kreisel Conjecture in mathematical logic.25

(iv) As a consequence of these conjectures, we give the first known conditional separation between the well-26

studied bounded arithmetic theories VAPC and V1 (equivalently APC1 and S12). Moreover, we do so27

without cryptographic assumptions. This constitutes substantial progress towards understanding the28

necessary tools needed to show unprovability in bounded arithmetic.29

In the remainder of this introduction we give context, motivation, a more detailed description of our30

results, and a list of open problems about constructive complexity theory.31

1.1 Algorithmic Constructivity in Complexity Theory32

Underpinning many recent developments in complexity theory is the notion of constructive lower bounds.33

Namely, algorithms for solving refutation problems and avoidance search problems.34

1. Refutation — If a lower bound holds for a problem Π against a model of computation M , then the35

Π-Refutation for M problem is: given an algorithm A fromM and a number n, print a string of length36

n for which A fails to solve Π correctly; i.e. a counterexample to the claim that “A solves Π.”37

2. Avoidance — Fix Λ =
⋃
n∈N Λn an infinite set of compressible strings, where each Λn denotes the n-bit38

strings described by a particular set of bounded-complexity devices, such as Boolean circuits of size at39

most log(n)2. The Λ-Avoid problem is then: given a number n, print an n-bit string outside Λn. That40

is, print a counterexample to the claim “every n-bit string is compressed by a Λ-device.”41

Refutation has been an explicit object of study since Kabanets [26] introduced refuters to give an uncondi-42

tional weak derandomization of RP. Since then, upper bounds on refuters have been a driving force behind43

derandomization and lower bounds. A seminal example is the algorithmic method of Williams to give lower44

bounds against ACC0. These lower bounds [51, 13] crucially use a refuter for the NTIME hierarchy the-45

orem, with [13] in particular using an almost-everywhere refuter of Fortnow and Santhanam [19] against46
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NTIMEGUESS[T (n), O(n)], for time-constructive T (n). Refutation has also been recently shown by Chen,47

Tell, and Williams [14] to unify many previous techniques that give conditional derandomization results.48

Avoidance search problems are also intimately tied with circuit lower bounds and derandomization.49

Korten [27] showed that many important explicit construction problems (e.g. computing hard truth tables,50

rigid matrices, and high time-bounded Kolmogorov complexity strings) are all reducable to the avoidance51

problem Empty.52

Empty: Given circuit C : {0, 1}m → {0, 1}n, with n > m output a string x ∈ {0, 1}n outside the range of C.53

This shows that circuit lower bounds and derandomization are implied by fast algorithms for Empty.54

Ren, Santhanam, and Wang [49] deepened this connection by studying algorithms for C-Avoid, parametrized55

by a circuit class C. Finally, Chen, Hirahara, and Ren [10], and a follow-up by Li [35], used Korten’s reduction56

from finding hard truth tables to Empty in order to give truly exponential circuit lower bounds for S2E.57

Constructive Separations. To formally study the power and limitations of constructive lower bounds,58

Chen, Jin, Santhanam, and Williams [11] asked what happens if you can convert several classical non-59

constructive lower bounds into constructive ones? Their definition of constructivity goes through efficient60

Refutation algorithms, and implicitly Avoidance algorithms.161

Definition 1.1 (C-Refuter). Let f : {0, 1}∗ → {0, 1} be a function and let A be an algorithm. The refutation62

search problem Reff,A := {(n, x) | x ∈ {0, 1}n and f(x) ̸= A(x)} asks to find an input x where A disagrees63

with function f . An algorithm R(1n) is a C-refuter against A if R ∈ C and for infinitely many n, (n,R(1n)) ∈64

RefR,A.65

Definition 1.2 (C-Constructive Separation). For complexity classes A,B, C, a separation B ̸⊂ A is called66

C-constructive if for some language LB decidable in B and any proposed algorithm A ∈ A that decides LB ,67

there is a C-refuter RA.68

Chen et. al [11] gave several insights on constructive separations. First, they showed that a P-constructive69

separation for the classic Palindromes lower bound of Maass [38] implies a major complexity separation.70

Theorem 1.3 (Theorem 3.4, [11]). If Maass’s lower bound against deciding Palindromes with one-tape71

nondeterministic Turing machines of subquadratic time can be made P-constructive, then E ̸⊂ SIZE[2δn], for72

some δ > 0.73

They also showed that efficient Avoid algorithms imply complexity separations.74

Theorem 1.4 (Implicit to Theorem 1.7(i), [11]). If there is a uniform AC0[qpoly] algorithm solving Avoid75

for circuits of size s(n) = n(logn)
ω(1)

, then P ̸= NP.76

However, not all known lower bounds can be made constructive. Chen et. al. observed that there can77

be no polynomial time algorithm which on input 1n, outputs an n-bit string of high-Kpoly complexity (see78

Proposition 4.4). This contrasts in a peculiar way with the lower bounds of Theorem 1.3 and Theorem79

1.4. Chen et. al. argue that understanding better which lower bounds are likely to be constructive or80

non-constructive will be key to progress in complexity theory. See their paper for more details.81

1.2 Our Results: Student-Teacher Constructive Separations82

In this paper, we generalize the results of Chen et. al. to the setting of Student-Teacher refuters.83

Definition 1.5 (Student-Teacher Game (Informal)). Let φ(X) = ∀Y θ(X,Y ), for θ a quantifier-free formula,84

and let p(n), q(n) be polynomials. We say S(1n) is a C-Student-Teacher game if S is an algorithm in C with85

access to a counterexample oracle CX[φ] which given an X ∈ {0, 1}p(n), either responds “YES” or returns86

a Y ∈ {0, 1}q(n) such that θ(X,Y ) is false. We further write CX[φ, r(n)] for a function r(n) to indicate S87

gets access to r(n) calls to the oracle CX.88

1An avoidance algorithm can be thought of as a refuter for the “always-YES” algorithm against some hard language. For
example, a polynomial time algorithm for solving Avoid for circuits of size s(n) gives a polynomial time algorithm refuting the
“always-YES” algorithm for MCSP[s(n)].
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Student-Teacher games are a natural model of computation which appear in learning algorithms and89

bounded arithmetic. For many complexity lower bounds, provability in a weak logical theory implies an90

efficient Student-Teacher refuter, rather than a standard refuter as seen in [11]. This means that to study91

the (un)provability of complexity lower bounds, it is necessary to study Student-Teacher games. We make92

this connection more explicit in the following section. See a more detailed definition of Student-Teacher93

games in Section 2.6.94

As an example of a Student-Teacher game, consider a P-Student-Teacher refuter SM solving the refutation95

search problem RefPal,M , with M a one-tape subquadratic time nondeterministic Turing machine. Here,96

φPal(X,W
∗) expresses the following formula:97

φPal(X,W
∗) ≜ “For every witness W of length |X|1.1, [M(X,W ) = 0 and X is a palindrome] or98

[M(X,W ∗) = 1 and X is not a palindrome.]”99

Each round, S would propose X,W ∗ to the counterexample oracle CX, where either CX says “YES” if100

X is an input that M fails to decide whether X is a palindrome, or CX responds to S with a witness W101

such that M does correctly decide X.102

Palindromes. We generalize Theorem 1.3 to P-Student-Teacher refuters.103

Theorem 1.6. If for any nondeterministic one-tape subquadratic time Turing machine M there is a P-104

Student-Teacher game SM (1n) with counterexample oracle CX[φPal, O(1)] solving RefPal,M for n-bit inputs,105

then NP ̸⊂ SIZE[nk] for any k ≥ 0.106

A P-Student-Teacher refuter is considerably stronger than a P-refuter in the context of Palindromes107

lower bounds. The oracle CX[φPal] acts as a restricted NP-oracle, as finding a witness W where M(X,W ) is108

correct is an NP-language. Nevertheless, we show that P-Student-Teacher refuters for one-tape subquadratic109

NTMs deciding Pal still imply breakthrough circuit lower bounds.110

Weak Shannon Counting. We give a slightly orthogonal result to Theorem 1.4. Here, we consider111

avoidance algorithms for weak Shannon counting. Namely, for a fixed b ∈ N and given an input 1N , output112

a truth-table of length N which is not computed by a size (logN)b Boolean circuit. Let φWSC(X, b) express113

the following formula:114

φWSC(X, b) ≜ “For every circuit C of size (log |X|)b, the truth table generated by C disagrees with X on115

some bit.”116

We introduce the notion of an absolute Student-Teacher game, which solves SIZE[nb]-Avoid for infinitely117

many b. Meaning, the student S takes two inputs: 1N and b (represented in binary) and solves SIZE[nb]-118

Avoid.119

Theorem 1.7. If there is an absolute poly log-uniform AC0[qpoly]-Student-Teacher protocol S(1N , b) with120

oracle CX[φWSC , O(1)] solving SIZE[nb]-Avoid for infinitely many b ∈ N, then P ̸= NP.121

If you simply fix a b ∈ N instead of having an absolute Student-Teacher protocol, then such a Student-122

Teacher protocol does exist (see Section 5). However, we only get our consequence P ̸= NP for an absolute123

Student-Teacher protocol.124

Our notion of an absolute Student-Teacher protocol appears naturally in the context of bounded arith-125

metic and witnessing theorems. See Section 1.4 and Section 4.3 for a discussion.126

High-Kpoly Strings. We now give an avoidance problem which provably has no Student-Teacher game.127

Let φKt(X, b) express the following formula:128

φKt(X, b) ≜ “For every Turing machine and advice pair (M,α) of description length |X|/4, running M for129

nb steps with advice α has output disagreeing with X.”130

Let BHaltDesc[nc, p(n)] be the class of Turing machine and advice pairs (M,α) of total description length131

p(n) which, starting with α on the tape of M , runs for nc time. We then have the following.132

Theorem 1.8. There is no absolute P-Student-Teacher protocol S(1n, b) (b given in unary) with oracle133

CX[φKt , poly(n)] solving BHaltDesc[nb, n/4]-Avoid.134
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1.3 Proof Theoretic Constructivity in Complexity Theory135

Our results on Student-Teacher constructive separations have several consequences on the provability of lower136

bounds in bounded arithmetic. Bounded arithmetic is a related and more fine-grained notion of constructivity137

that comes from not just the algorithms for refutation and avoidance, but also from the logical expressivity138

needed to prove the correctness of these algorithms.139

Bounded Arithmetic. Bounded arithmetic studies fragments of Peano Arithmetic (PA) which use rea-140

soning inherent to computational complexity classes. The earliest example is the theory I∆0, introduced141

by Parikh [44]. He showed that reasoning in I∆0 corresponds to the Linear Time Hierarchy (LTH), and142

that certain operations like exponentiation are infeasible in this theory. One of the most important and143

well-studied bounded arithmetic theories is Cook’s theory VPV. It is an equivalent version of Cook’s original144

theory, PV1, defined in his seminal 1975 paper [18]. This theory was the first proposed to exactly characterize145

polynomial-time computation and reasoning, and more generally was the first theory introduced to explicitly146

connect standard complexity classes and bounded arithmetic. PV stands for polynomially verifiable, and one147

of Cook’s original motivations for defining this theory is that when VPV proves a statement like ∀X φ(X),148

there is a polynomial time algorithm Verifyφ which on input Y verifies φ(Y ) holds.149

This constructive property is known as witnessing. If a theory T proves the existence of some object,150

then this implies there is an efficient algorithm that generates this object. As an example, suppose VPV151

were to prove the following Π2 statement describing a circuit lower bound for language L, which is decided152

by machine M :153

“For every input length n and circuit C ∈ C, there exists an input x of length n such that C(x) ̸=M(x)”154

Then, the witnessing property for VPV says there is a polynomial time algorithm which finds an incorrect x155

when given n,C as input. Notice that this a P-refuter!156

While a provable Π2 statement directly translates into a refuter, the situation is more complicated for157

Πi statements with i ≥ 3. Focusing on i = 3, witnessing properties give Student-Teacher protocols. For a158

Π3 statement ∀n∃X ∀Y θ(n,X, Y ), a witnessing Student-Teacher protocol S would take as input 1n, and159

query the counterexample oracle CX[φ] on guesses for a satisfying X, for φ = ∀Y θ(n,X, Y ). See Sections160

2.4 and 2.5 for more details on witnessing theorems.161

Π3 formulas naturally encode many refutation and avoidance type statements. Maass’s Palindromes lower162

bound, Shannon counting, and the existence of High-Kpoly strings are all examples. Hence, the (un)provability163

of these statements in bounded arithmetic is closely tied to Student-Teacher constructive separations.164

A Gap Between Constructive Separations and Provability. In Chen et. al. [11], they noted a165

gap between constructive separations and provability. A P-constructive separation of B ̸⊂ A does not at166

all guarantee that VPV ⊢ “B ̸⊂ A”. This can be for several reasons: the refuter might not be provably167

correct inside VPV, or B ̸⊂ A might only be formalizable as a Π3 formula, which by witnessing gives a168

Student-Teacher game with an polynomial time student, rather than just a P-refuter. For these reasons, the169

consequences of a (non)constructive separation of B ̸⊂ A may not have any bearing on the (un)provability170

of the same lower bound B ̸⊂ A.171

An explicit example of this gap, given by [17, 12], is proving the correctness of the AKS primality testing172

algorithm [1]. We can formalize the correctness of it as the following formula:173

∀n [AKS(n) = 1←→ ∀1 < d < n, d ∤ n] ,

where AKS is a function symbol for the AKS primality testing algorithm. If this statement were provable174

in VPV, then there would be a polynomial time algorithm which on input 1n, n a composite number, would175

be able to determine a factor of n. Hence, VPV proving the correctness of AKS would imply that factoring176

has a polynomial time algorithm. This shows that the proof of correctness in [1] of their polynomial time177

algorithm AKS uses functions which are themselves not polynomial time computable.178
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Formalizing Lower Bounds as Schemas. Straightforward translations of many complexity lower bounds179

into the language of bounded arithmetic require schemas of formulas: a sequence of formulas indexed by180

substitution of fixed polynomials {nc}c∈N. Theories of bounded arithmetic cannot quantify over arbitrary181

polynomials. A simple example of this would be the Deterministic Time Hierarchy theorem.182

DTIMEH(c) ≜ “For every sufficiently large n and Turing machine M , there exists an input X of length n183

where simulating M on X for nc time incorrectly decides hard language Lc+1”184

For each c ∈ N, you get a new formula DTIMEH(c) describing that DTIME[nc+1] ̸⊂ DTIME[nc]. This is185

necessary in bounded arithmetic as exponentiation is not a feasible operation, so a single formula DTIMEH186

quantifying over all c is not possible in a theory like VPV. The same issue also occurs when writing down,187

say, P ̸= NP in the language of VPV.188

This poses a problem when trying to study the provability of lower bounds. Applying witnessing to a189

schema of Π3 formulas Ψ[c] would result in a schema of Student-Teacher games, each solving a different190

search problem parametrized by c. Further, a Student-Teacher game for Ψ[c0] is not required to share any191

structure or runtime with a Student-Teacher game for Ψ[c1], with c0 ̸= c1. This means that our results on192

absolute Student-Teacher games do not automatically imply provability consequences.193

1.4 Our Results: Consequences in Bounded Arithmetic194

We initiate the study of the following natural question about lower bound schemas.195

Question 1.9. Let LB(c) be the logical translation of some complexity theoretic lower bound, parametrized196

by c ∈ N. If VPV ⊢ LB(c), for every c, then does VPV use the same “proof” for every c?197

While it is unclear at all if VPV ⊢ “P ̸= NP”, it is known that VPV ⊢ DTIMEH(c), for every c ∈ N.198

Amazingly, VPV could use “the same” proof for every c! This follows as the refuter for DTIMEH is completely199

agnostic to c, and hence is the same regardless of the value of c. Specifically, there is a hard language200

L ∈ DTIME[nc+1]\DTIME[nc] where a refuter runs linearly in n to construct a counterexample of a proposed201

machine M ∈ DTIME[nc] deciding L. Does this property of the Deterministic Time Hierarchy theorem hold202

more generally for other complexity lower bounds?203

We denote by ‘Witnessing Hypothesis for Uniform Proofs’ (WHUP) that such a phenomenon in fact204

holds, and that for certain classes of lower bound schemas, if a theory T proves the schema, then it does so205

with the same proof.206

Hypothesis 1.10 (WHUP for theory VPV (Informal)). Let VPV ⊢ ∀n ∃X ∀Y θ(n,X, Y, nc), for a quantifier-207

free θ and for infinitely many c ∈ N, and let φ(n,X, c) = ∀Y θ(n,X, Y, nc). Then there is a witnessing absolute208

Student-Teacher game S(1n, c) which, for infinitely many c, finds a satisfying X of length n using O(1) oracle209

calls to CX[φ].210

WHUPs can be used to connect the (un)provability of schemas of formulas in bounded arithmetic with211

absolute Student-Teacher constructive separations. Our Witnessing Hypotheses are similar to and inspired by212

a conjecture of Kreisel for Peano Arithmetic. See Section 4 for a detailed discussion where we carefully define213

Witnessing Hypotheses and provide many supporting examples for the validity of WHUPs. We conclude214

this section with a sketch of each of our results on provability.215

Palindromes. First, we extend Theorem 1.6 to provability in VPV. Let Pal be a Π3 formula expressing216

Maass’s lower bound.217

Theorem 1.11. If VPV ⊢ Pal, then NP ̸⊂ SIZE[nk].218

This complements recent work of Chen et. al [12], showing that if Maass’s lower bound is provable in219

VPV, then collision resistant hash functions do not exist.220
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Weak Shannon Counting. Building on the work of Thapen [50], Jeřábek [25], studied the theory VAPC :=221

VPV + dWPHP(VPV) which adds the dual weak pigeonhole principle, the combinatorial principle behind222

Empty and C-Avoid. He showed VAPC has an intimate relationship with randomized complexity (ZPP) and223

approximate counting. Namely, all provably total functions in VAPC are contained in ZPP, and conversely,224

a large natural subclass of ZPP is definable in VAPC. It is possible that VAPC may completely characterize225

ZPP, but this would require showing that ZPP has a complete problem [50].226

VAPC is interesting because of its ability to formalize most known complexity lower bounds. Jeřábek227

showed that it can formalize Shannon counting arguments, and Müller and Pich [41] further illustrated its228

power by formalizing Parity lower bounds and the method of approximations. Recent results in unprovability229

have also been shown. Chen et. al [12] showed that if collision resistant hash functions exist, then Maass’s230

palindromes lower bound is not formalizable in VAPC.231

We give a result orthogonal to Jeřábek’s provability of Shannon counting in VAPC. We introduce a theory232

V0
# to characterize quasipolynomial AC0 reasoning. This theory is incomparable to VAPC, but we show it is233

also capable of proving weak Shannon counting.234

Lemma 1.12. Let b ∈ N. V0
# proves the existence of truth tables not computable by Boolean circuits of235

size nb.236

Further, under a WHUP for V0
#, we have consequences for the provability of hard truth tables.237

Theorem 1.13. Assuming a WHUP for the theory V0
#, if V

0
# proves for every b ∈ N that there are truth238

tables of hard for size nb circuits, then P ̸= NP.239

We then get as a clear corollary,240

Corollary 1.14. A WHUP for V0
# implies that P ̸= NP.241

See Theorem 5.10 for full details.242

Conditional Separation of V1 and VAPC We show the following surprising unprovability result.243

Theorem 1.15. Under a Witnessing Hypothesis, VPV (or even V1) cannot show the existence of High-Kn
b

244

strings, for almost every b ∈ N.245

As a corollary, we conditionally separate theories V1 and VAPC (equivalently S12 and APC1).246

Theorem 1.16. Under a Witnessing Hypothesis, VAPC is not equivalent to V1.247

Proof. In the work of Korten [27], it was shown that APC1 proves the existence of high-K
poly strings. However,248

under a Witnessing Hypothesis (Hypothesis 4.11), V1 does not show these strings exist.249

This improves and greatly simplifies the result of Ilango et. al [24] separating VAPC and VPV under the250

existence of indistinguishability obfuscation and NP ̸= coNP. Our result is also the first such conditional251

separation between any bounded arithmetic theory T and VAPC which uses a plausible2 non-cryptographic252

assumption.253

Separating theories of bounded arithmetic should be far easier to prove than demonstrating the existence254

of cryptographic objects like collision resistant hash functions or indistinguishability obfuscation. It is then255

desirable to give conditional separations of theories using assumptions much weaker than cryptography. We256

believe Witnessing Hypotheses are such an assumption. However, Corollary 1.14 indicates that WHUPs are257

still quite strong, as some will imply major complexity separations. Is this the case with a WHUP for VPV?258

Are WHUPs in fact EQUAL to the existence of some cryptographic object?259

2In [29], Kraj́ıček showed that assuming Kolmogorov’s Conjecture, P ⊂ SIZE[nk] for some fixed k, then VAPC is strictly
stronger than VPV. However, Kolmogorov’s Conjecture is widely believed to be false.
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1.5 Our Techniques.260

Constructive Separations. We employ the general strategy of Chen et. al. [11] to show that efficient261

refuters imply circuit lower bounds.262

(i) Assume, for sake of contradiction, a complexity collapse (eg. P = NP or P ⊂ SIZE[nk]). Show that a263

C-refuter from a C-constructive separation of B ̸⊂ A produces outputs of very small circuit complexity.264

(ii) Show that there exists a too efficient algorithm M ∈ A for a hard language LB which is correct on all265

inputs of low circuit complexity. This forms a contradiction.266

As mentioned in Section 1.4, this argument is not sufficient on its own to discuss the consequences267

of provability of lower bounds, as provability and witnessing implies Student-Teacher refuters instead of268

standard refuters. To handle this, we introduce several novel round collapse techniques to remove the269

Teacher from Student-Teacher protocols. This gives a reduction to the proof strategy of [11].270

Round Collapses. Round collapse techniques have seen widespread recent study to show the unprovability271

of Π3 sentences in theories of bounded arithmetic [8, 24, 29, 9, 16, 46]. We continue this line of work by272

introducing three novel round collapse arguments.273

A common issue with round collapse techniques is that they are very ad hoc and strongly depend on274

the discussed lower bound. In the case of Maass’s Palindromes lower bound, we introduce in Section 3 a275

very general technique to deal with collapsing a P-Student-Teacher protocol whose counterexample oracle276

CX[φ,O(1)] solves an NP-language. Recall for a one-tape subquadratic time NTMM , φPal(X) certifies that277

for every witness W , M(X,W ) = 0 when X is a palindrome. Hence the counterexample oracle CX[φPal]278

solves the NP language of determining a witness W ′ where M(X,W ′) = 1. Assuming NP ⊂ SIZE[nk], we279

may use the Easy Witness Lemma of Murray and Williams [42] to give a compressed description of W ′.280

By providing this compression of W ′ as advice to the Student, we can replace a single query to CX[φPal].281

Repeating this argument allows the conversion of a P-Student-Teacher refuter into a P/o(n)-refuter.282

Our other round collapses are much more ad hoc. For weak Shannon counting and Theorem 1.7, we283

generalize the technique of Chen et. al. [11] to efficiently simulate a polylog-uniform AC0
d[qpoly] refuter C(1

n)284

with a general sublinear size Boolean circuit, assuming P = NP. Their idea is to show that computing the285

i-th bit of C(1n) is a Σpd[polylog(n)] problem, which collapses to DTIME[polylog(n)] under P = NP. We286

show this argument completely in Lemma 5.5. Where we must generalize this argument is to further allow a287

polylog-uniform AC0[qpoly] Student-Teacher refuter, and provide a method to remove the CX oracle gates.288

We do so in Section 5.289

The round collapse for high-Kpoly strings and Theorem 1.8 is conceptually the most natural. We take290

direct inspiration from the DTIME[n]-constructive separation of DTIME[nc+1] ̸⊂ DTIME[nc]. The linear time291

refuter RM (1n) simply outputs the padded source code of M , ⟨M⟩ ◦ 0n−|⟨M⟩|. Our observation in Section 4292

is that for an absolute P-Student-Teacher protocol solving BHaltDesc[nc, n/4]-Avoid for all c ∈ N, the source293

code of the Student is a valid response for the counterexample oracle CX[φKt ]. We give a fine-grained294

reflection argument to generally transform a P-Student-Teacher protocol for BHaltDesc[nc, n/4]-Avoid into a295

polynomial time algorithm, even when polynomially many Teacher queries are made by the Student-Teacher296

protocol.297

1.6 Comparison to Other Work.298

AC0 reasoning and Provable Circuit Lower Bounds. Several previous works have studied the prov-299

ability of circuit lower bounds in bounded arithmetic via round collapses. Pich [46] showed unconditionally300

that the theory V0, corresponding to log-uniform AC0[poly] reasoning, cannot prove superpolynomial size301

circuit lower bounds. This contrasts with our Lemma 1.12, where we show that the theory V0
# proves302

fixed polynomial size circuit lower bounds. This suggests an intriguing question of finding the exact logical303

strength necessary for proving fixed polynomial size circuit lower bounds.304
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Separating VAPC and VPV. Kraj́ıček [29] gave the first conditional separation of VPV and VAPC via round305

collapse techniques. Unfortunately, his round collapse required the unlikely assumption that P ⊂ SIZE[nk].306

In [30], Kraj́ıček called for reasonable assumptions under which VAPC is strictly stronger than VPV. This307

was achieved by Ilango et. al. [24], who showed that under indistinguishability obfuscation and NP ̸= coNP,308

these theories are indeed separated. These conditional separations of [29, 24] were accomplished by studying309

the dual weak pigeonhole principle dWPHP(VPV) and Student-Teacher protocols for solving Empty.310

Using a Witnessing Hypothesis, we conditionally separate VAPC from an even stronger theory V1, which311

contains VPV. Further, we make use of a weaker, uniform version of the dual weak pigeonhole principle.312

1.7 Open Problems.313

This work suggests several continuations and open problems. We provide two directions pertaining to314

(un)provability, and several towards understanding and proving WHUPs.315

Improving the Palindromes round collapse. While we show that a constant round Student-Teacher316

refuter for Palindromes would imply NP ̸⊂ SIZE[nk] for any k > 0, we fall short of proving this for ω(1)317

rounds. Is there a polynomial round Student-Teacher refuter for Palindromes? This could be used to extend318

our provability consequence to theories V 1/S1
2 .319

Unprovability for APC1. In Section 4, we show that under a Witnessing Hypothesis for VPV, generating320

high Kpoly strings is not feasible in VPV. Can this be generalized to unprovability in APC1. This would likely321

have to be for a notion of zero-error time-bounded Kolmogorov complexity, which the authors are unaware322

of appearing in the present meta complexity literature.323

What do proofs look like? Amongst our examples of the “absolute” witness phenomenon, like the refuter324

for DTIMEH, what do the VPV proofs actually look like? This would be a basic building block to understand325

before attempting to prove a WHUP. We emphasize that we know the proofs, but not a structural measure326

or property that makes it clear they are “the same” across different values of the parameter. Surprisingly327

simple polynomial schemas have proofs in VPV where we do not have a solid understanding of their structure.328

One example is,329

φ(b, c) ≜ ∀n c > b→ nc > nb.

As VPV is defined for the purpose of encapsulating polynomial time computation (rather than performing330

arithmetic), even simple arithmetic identities can have “complicated” proofs. Showing that the sequent331

calculus proofs of φ(b, c) over VPV are the same for all b, c ∈ N would be of interest.332

Correct Formulation of “Same” Proofs. We phrase our WHUPs based on the notion of Herbrand333

proofs from the famous Herbrand’s Theorem in first order logic. This allows us to interplay with witnessing334

theorems nicely. However, it is possible that our notion of “same proof” is still too coarse, and that WHUPs335

would be more appropriately phrased in another way. One potential example would be the notion of uniform336

proofs, proposed by Buss [7], where proofs are given an efficiently decidable direct connection language as337

you would a circuit.338

Proving a WHUP. Perhaps the most obvious would be actually showing a WHUP to be true for VPV,339

V0
#, or any other bounded arithmetic theory. We believe that past work on Kreisel’s Conjecture [22, 23, 32]340

serves as an excellent starting point. For example, Kraj́ıcek and Pudlák [32] show that Kreisel’s Conjecture341

is true over any theory which is finitely axiomatizable, of which many theories of bounded arithmetic are342

(including VPV and V0
#).343

Consequences of WHUPs. Corollary 1.14 shows that WHUPs can have immediate consequences if true.344

Are there more examples of WHUP consequences, but for standard theories like VPV and V1? Further, are345

there consequences if WHUPs are false?346
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1.8 Paper Organization.347

In Section 2, we give the requisite preliminaries in bounded arithmetic and complexity theory. In Section348

3, we give our results on Student-Teacher constructive separations for Palindromes, and its applications to349

provability in VPV. In Section 4, we introduce Witnessing Hypotheses for Uniform Proofs and apply them350

to get the unprovability of finding high-Kpoly strings in VPV. We further give a detailed discussion of the351

viability of WHUPs and their inspiration from the famous Kreisel Conjecture in logic. Finally, in Section 5,352

we introduce the theory V0
# and show that a WHUP for this theory would imply P ̸= NP.353

2 Preliminaries354

Basic knowledge of complexity classes is assumed. See [3] or any text on complexity theory for a reference of355

the standard definitions. We attempt to keep this paper as self-contained as possible for mathematical logic356

and bounded arithmetic; however, we recommend seeing the SIGACT column of Oliveira [43] which surveys357

much of the recent work on the provability of complexity theory. This survey provides invaluable context to358

the motivations of this paper.359

2.1 Circuit Uniformity360

A family of circuits C = {Cn}n≥1 is called uniform if some uniform algorithm is able to, on input n, compute361

a fixed binary encoding of ⟨Cn⟩. We will use the direct connection encoding of circuits, where ⟨Cn⟩i = 1 if362

and only if i encodes a triple (g, h, r) with g and h being gate indices, and r indicating the type of g (namely,363

one of NOT/AND/OR/INPUT/OUTPUT). In the case that r is an INPUT type, it must also indicate which364

input bit out of n. Topologically, h feeds into g as an input, unless r indicates that g is an INPUT type. We365

will also need an oracle direct connection encoding. This is a slight modification where we add two types of366

gates: ORACLE, and Oracle OUTPUT, where ORACLE represents a black-box oracle that takes in p(n)367

bits and outputs q(n) bits. For both of these gate types, r must also indicate which of the p(n) input bits a368

gate h is feeding into ORACLE, or which of the q(n) output bits an OUTPUT gate g is. Note that given a369

circuit with s(n) gates, its (oracle) direct connection encoding will be of length at most s(n)3.370

Definition 2.1 (LOGTIME-uniformity). We say that a circuit family C = {Cb}n, where Cn is of size s(n),371

is logtime uniform if there is a linear time algorithm U which on input n and an index i < |⟨Cn⟩|, both372

represented in binary, outputs the i-th bit of ⟨Cn⟩. Similarly, such a circuit family is polylogtime uniform if373

the uniform algorithm U runs in time polynomial in the input size.374

2.2 Basic Logic and Terminology375

We will assume basic knowledge of propositional and first-order logic, as well as Gentzen’s sequent calculus.376

We remind the reader of some of the standard syntax below. For a concise and complete introduction to the377

necessary logic and proof theory, see Chapters I-III of [17] or Chapters I and II of [6].378

Definition 2.2 (Syntax).379

Symbols and Terms: The symbols appearing in first-order logic are the usual logical connectives (¬, ∧, ∨, →),380

quantifiers (∀, ∃), specified function and predicate symbols, and constants (0-arity functions). As well, arbi-381

trary names for variables are allowed. A term is inductively defined: any variable x is a term, and for any382

function symbol f of arity k and terms t1, . . . , tk, f(t1, . . . , tk) is a term.383

Formulas: A formula is also inductively defined. Atomic formulas are of the form P (t1, . . . , tk) for a pred-384

icate P of arity k, and general formulas are built up from atomic ones by applying logical connectives and385

quantifiers. We say a variable x in a formula is bound if it is in the scope of a quantifier Qx. Otherwise, it386

is free. A formula with no free variables is called a sentence.387

Substitution: Let A(x) be a formula with x a free variable. For a term t, we denote A(t/x) to be the388

substitution of t for x in A, where we replace every occurence of the free variable x in A with t.389

Definition 2.3. A first-order theory T is a set of sentences which is closed under logical implication.390

Specifically, if T derives via a sequent calculus proof the sentence φ, then φ ∈ T . A set of sentences Γ are391
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an axiomatization of T if Γ ⊂ T and all of T is derivable from Γ via sequent calculus proofs. The language392

of a theory T , L(T ), is the set of symbols for functions, predicates, and constants (0-ary functions) used in393

the logical sentences contained in T . A theory is said to be universal if it has an axiomatization with only394

universally quantified sentences in prenex normal form.395

We can compare theories by considering the set of theorems that they prove. The appropriate notion is396

Definition 2.4 (Conservative Extension). Suppose that T1 and T2 are two theories where T1 ⊆ T2 and the397

vocabulary of T2 may contain function or predicate symbols not in T1. We say T2 is a conservative extension398

of T1 if for every formula φ in the vocabulary of T1, if T2 ⊢ φ then T1 ⊢ φ.399

In other words, the second theory proves nothing new over the original vocabulary.400

In this paper, we study the first-order theory of arithmetic, Peano Arithmetic (PA), as well as its sub-401

theories. We denote by N the standard model of PA, which should be interpreted as the ‘real world’. The402

defining feature of Peano Arithmetic (and its intended model N) is induction: for a formula φ(x, y), the403

axiom of induction, Ixφ, is the sentence:404

∀y (φ(0, y) ∧ ∀x (φ(x, y)→ φ(x+ 1, y))→ ∀xφ(x, y)) .

Peano Arithmetic is defined by basic arithmetic axioms and the axiom of induction for every formula405

φ. For a restricted class of formulas Φ, we define IΦ as the subtheory of PA with induction restricted to406

formulas φ ∈ Φ.407

2.3 Peano Arithmetic408

We recall the characterization of provably recursive functions of IΣn [5].409

Definition 2.5. Let T be a subtheory of PA and f : Nk → N. The function f is Σi-definable in T iff there410

is a formula φ(x1, . . . , xk, y) ∈ Σi such that:411

1. T ⊢ (∀x⃗)(∃!y)φ(x⃗, y)412

2. {(⃗a, b) : N |= φ(⃗a, b)} is the graph of f , i.e. φ(⃗a, b) holds iff f (⃗a) = b for all naturals a⃗, b.413

Σ1-definable functions in a theory T are also commonly called the provably recursive functions of T .414

Lemma 2.6 (Informal). Let f be a function that is provably recursive in PA. Then we can freely add the415

function symbol f to L(PA) and the defining axioms of f to PA without modifying the strength of PA.416

Definition 2.7. Let n ≥ 1. The set of functions which are primitive recursive in Σn is defined inductively417

by:418

1. Constant function 0, succcessor function, and all projection functions are primitive recursive in Σn.419

2. Closure under composition.420

3. If g : Nk → N and h : Nk+2 → N are primitive recursive in Σn, then so is the function f defined by421

f(0, z⃗) = g(z⃗)

f(m+ 1, z⃗) = h(m, z⃗, f(m, z⃗))

4. If φ(z⃗) is a formula (∃x)ψ(x, z⃗) where B ∈ Πn−1 then UA is primitive recursive in Σn.422

Theorem 2.8 (Theorem 12, [5]). The Σn-definable functions of IΣn are the functions which are primitive423

recursive in Σn.424

10



2.4 Theories of Bounded Arithmetic425

We will be working with two-sorted theories, which deal with both a number-type (think in N) and a finite426

binary string type. The binary string type has an equivalent interpretation as a set type, where the i-th427

index of a string X being 1 indicates that i is in the set X. We follow the convention of denoting numbers428

in lower case (x, y, z, . . . ) and strings in upper case (X, Y, Z, . . . ). All theories in this paper are theories of429

arithmetic, and all share the language of arithmetic (L2
A), which contains the set of first-sort functions and430

predicates, {0, 1, +, ·, S, | · |; =, ≤} and the set of second-sort functions and predicates, {X(·), | · |; =2}.431

Here, S refers to the successor function of a number, X(i) outputs in number type the i-th bit of string X,432

and | · | on a string-type variable outputs a number-type which is the length of the string.433

In two-sorted bounded arithmetic theories, function symbols can be thought of as the run of some resource-434

bounded computational model (eg. Turing machines or uniform circuits). As such, the representation of its435

inputs becomes important. We will take the standard convention that the string-type is presented “as itself”436

in binary and a number-type is represented in unary when supplied as input to a function symbol. A feature437

of Peano Arithmetic and its subtheories is that any function f which is “easily” definable and provably438

total may be freely added to the language without changing the provability of any sentences. Below, we will439

specify exactly what these functions are for each theory we use.440

Definition 2.9. We denote a number quantifier as bounded by writing ∀x < t θ(x) or ∃x < t θ(x), for a term441

t not using x. This is syntactic shorthand for ∀x [x < t =⇒ θ(x)] and ∃x [x < t∧θ(x)] respectively. Similarly442

for quantifiers over strings, we say write ∀X < t θ(X), and ∃X ≤ t θ(X) to indicate ∀X (|X| < t =⇒ θ(X))443

and ∃X (|X| < t∧θ(X)). We say that a formula φ is ΣB0 = ΠB0 if the only quantifiers are bounded quantifiers444

over the number type (though there may be free string variables). A formula φ is ΣBi+1/Π
B
i+1, for i ≥ 0, if φ445

is of the form, ∃X < t θ(X), for θ(X) a ΠBi formula, or respectively, ∀X < t θ(X), for θ(X) a ΣBi formula.446

ΣBi formulas can be thought of as an effective version of the arithmetic hierarchy, and bears many447

similarities and connections to the polynomial hierarchy.448

Definition 2.10 (Provably Total Functions). Let T be a two-sorted subtheory of PA and f : Nk → N. The449

function f is ΣBi -definable in T iff there is a ΣBi -formula φ(x1, . . . , xk, y) such that:450

1. T ⊢ (∀x⃗)(∃!y)φ(x⃗, y)451

2. {(⃗a, b) : N |= φ(⃗a, b)} is the graph of f , i.e. φ(⃗a, b) holds iff f (⃗a) = b for all naturals a⃗, b.452

ΣB1 -definable functions in a theory T are also commonly called the provably total functions of T .453

We may give a lemma similar to Lemma 2.6 for provably total functions.454

Lemma 2.11 ((Informal)). Let f be a function that is provably total in a two-sorted theory T . Then we455

can freely add the function symbol f to L(T ) and the defining axioms of f to T without modifying the456

strength of T .457

Theory V0. One of the weakest and most basic of theories in bounded arithmetic that is studied is Cook458

and Nguyen’s theory V0, which captures uniform-AC0 reasoning. It is a uniform version of the propositional459

proof system AC0-Frege, and superpolynomial lower bounds for AC0-Frege imply unprovability in V 0.460

At the base of V0 are the so-called 2-BASIC axioms, which define the basics of how each function and461

predicate in L2
A behaves. This includes statements like x·0 = 0, distributivity of addition over multiplication,462

and many others. See [17] for the full list of axioms. In addition to 2-BASIC are the comprehension axioms463

ΣB0 -COMP, where for any ΣB0 -formula φ, we get the axiom,464

∃X ≤ y ∀z < yX(z)←→ φ(z).

ΣB0 -COMP axioms should be thought of as giving V0 the power to generate truth tables of AC0-computable465

functions. V0 will, in addition to L2
A, have a function symbol f in its language for every LOGTIME-uniform466

AC0 function f , and the ΣB1 -defining axiom of f added to V0. Note it is well-known that LOGTIME-uniform467

AC0 is equivalent to the LOGTIME Hierarchy, so we may include functions symbols for either.468

V0 is surprisingly powerful and expressive. It is capable of proving many elementary theorems about469

number theory and combinatorics and can perform Gödel numbering and coding of sequences. It is known470

that V0 cannot reason about the Parity function (⊕) or other functions which have AC0 lower bounds.471
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Theory VPV. The full definition of VPV is involved, and the details do not matter here outside of its472

correspondence with polynomial time functions. To see a detailed definition of VPV, see [17]. The language473

of VPV is L2
A along with a symbol f for any polynomial-time computable function f . The theory is defined474

by initially adding the defining axioms of five uniform-AC0 functions, and then using Cobham’s recursive475

definition of polynomial time functions [15] within the theory to build out the rest of FP.476

Theory V1. Adding the comprehension axioms ΣB1 -COMP to 2-BASIC, we go from V0 to V1. As every477

polynomial time function is ΣB1 -definable in V1, we may freely add their definining axioms to the theory478

and add a function symbol for every f ∈ FP. This theory characterizes polynomial time computation and479

reasoning, similarly to VPV. It has the benefit of being much easier to define, and is more easily generalizable480

to reflect reasoning in the i-th level of the polynomial hierarchy (theory Vi). It is known that VPV ⊆ V1, but481

it is open if VPV and V1 are in fact equal; under cryptographic assumptions like the hardness of factoring,482

Thapen showed that V1 is strictly stronger [50]. As we shall also see, there is an important difference in the483

witnessing theorems for VPV compared to the witnessing theorems for V1.484

V1 (and more generally Vi, for i > 0), are equivalent to the single-sorted theories Si2 introduced by Buss485

in his seminal PhD Thesis [4].486

VPV Function Symbols We will be translating several lower bounds against Turing machines of different487

resource bounds. In order to give VPV-translations of these statements, we must introduce some preliminary488

function symbols.489

Let RunM (X,n) be the VPV function symbol that on input X and clock bound n, runs M for n steps490

on input X and outputs the contents of its tape. Similarly for a nondeterministic machine M , an input491

X, clock n, and witness W supplied on a separate read-only witness tape, we have a VPV function symbol492

RunM (X,n,W ) which run M for n steps on input X and nondeterminism W and outputs the contents of493

its tape input/work tape.494

Lemma 2.12 (Implicit in [18, 4]). There is a paddable encoding of one-tape deterministic Turing machines495

LTM ⊂ {0, 1}∗ which is decodable in VPV. Specifically, there is a VPV function symbol Run(M,X, n)496

where for every Turing machine M and its binary encoding EM ∈ LTM , VPV ⊢ ∀X ∀n RunM (X,n) =497

Run(EM , X, n).498

Similarly for one-tape nondeterministic Turing machines, we can give an encoding language LNTM ⊂499

{0, 1}∗ which is decodable. Specifically, there is a VPV function symbol Run(M,X, n,W ) where for every non-500

deterministic Turing machineM and its binary encoding EM ∈ LNTM , VPV ⊢ ∀X ∀W ∀n RunM (X,n,W ) =501

Run(EM , X, n,W ).502

The above lemma can be reformulated for k-tape Turing machines for any number k, but we will only503

be concerned with one-tap machines in this paper. We will always assume Turing machines are encoded as504

LTM from Lemma 2.12.505

2.5 Witnessing Theorems in Bounded Arithmetic506

Witnessing theorems broadly show that if a theory T proves a ∀ΣBi formula φ, then there is a function fφ507

computable in a complexity class CT which finds a witness to the existential quantifiers in φ. We will largely508

work only with ∀ΣB1 and ∀ΣB2 formulas, which make witnessing conceptually simpler due to there being a509

single existential quantifier.510

The most classical example of witnessing in Bounded Arithmetic is Buss Witnessing [4], which is written511

in the language of two-sorted theories in [17].512

Theorem 2.13 (Buss Witnessing, [4, 17]). Let T be either V1 or VPV, and let φ be a ΣB1 formula. Suppose513

that514

T ⊢ ∀X∃Y φ(X, Y ).

Then there exists a function F ∈ FP such that N |= ∀Xφ(X,F (X)).515

Kraj́ıček, Pudlák, and Takeuti generalized Buss Witnessing to ∀ΣB2 formulas as follows.516
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Theorem 2.14 (KPT Witnessing Theorem, [33]). Let T be a universal theory with language L. Suppose517

that for a ΣB0 formula φ,518

T ⊢ ∀X ∃Y ∀Z φ(X,Y, Z).

Then for a constant k ≥ 1 and a sequence C1, . . . , Ck of L-string terms,519

T ⊢ ∀X ∀Z [φ(X,C1(X), Z1) ∨ φ(X,C2(X,Z1), Z2) ∨ · · · ∨ φ(X,Ck(X,Z1, . . . , Zk−1), Zk) ] .

This theorem applies to VPV, as VPV is a universal theory. For V0 and V1, KPT Witnessing as above520

cannot be immediately applied as neither theory is universal. There are several ways around this. One way521

is to universalize the axioms of V0 and V1 to give conservative extensions V
0
and V

1
, where KPT Witnessing522

can be applied. The other way is to prove KPT Witnessing directly using proof theoretic arguments and523

Buss Witnessing. For V0, we will use the former method and apply the above KPT Witnessing Theorem to524

the universal V
0
. For V1, we present its own KPT Witnessing Theorem below.525

Theorem 2.15 (KPT Witnessing Theorem for V1, [28]). Suppose that for a ΣB0 formula φ,526

V1 ⊢ ∀X ∃Y ∀Z.(|Z| < |X|)φ(X,Y, Z).

Then there is an FP function F such that,527

N |= ∀X ∀Z.(|Z| < |X|) φ(X,F (X), Z),

where F has access to the counterexample oracle CX[φ] which on query (X,Y ) outputs a string Z of length528

at most |X| such that N |= ¬φ(X,Y, Z) or “yes” otherwise.529

The Student-Teacher game interpretation of KPT Witnessing is very useful. A Student F , which is530

a search algorithm of some complexity class C, will take in X as input and want to find a Y such that531

∀Z φ(X,Y, Z). They start by proposing F1(X) to the Teacher, the counterexample oracle, who either says532

F1(X) is correct or gives a Z1 back to the Student as a counterexample. This repeats for r rounds until the533

Student proposes a correct Y .534

A difference between VPV and V1 is revealed here: the Student-Teacher game from the KPT Witnessing535

for VPV ends in constantly many rounds, while the Student-Teacher game for V1 ends in polynomially many536

rounds. This makes unprovability of ∀ΣB2 formulas in V1 potentially much harder than in VPV. Unprovability537

of ∀ΣB2 formulas usually goes by applying KPT Witnessing and showing the resulting Student-Teacher game538

can collapse into an impossibly fast/small algorithm without the counterexample oracle. The more rounds539

of a Student-Teacher game, the harder it is to prove that the oracle may be removed.540

2.6 Student Teacher Games and Refuters541

We formally introduce the Student-Teacher game framework which witnesses the KPT Witnessing Theorem.542

Definition 2.16 (C-STCX[φ,r] uniformity). Let C be a complexity class, and for a term t, let543

ψ := ∀n ∃Y (|Y | < t(n))∀Z (|Z| = n) φ(n, Y, Z)

be a formula with φ ∈ ΣB0 and N |= ψ. As well, let r(n) be a time-constructible function. Define Searchφ to544

be the total search problem Searchφ := {(n, Y ) | Y a binary string such that N |= ∀Z (|Z| = n) φ(n, Y, Z)}.545

We say that A is a C-STCX[φ,r] search algorithm for Searchφ if A ∈ C and on input 1n, A outputs a546

Y satisfying ∀Z (|Z| = n)φ(n, Y, Z) using at most r(n) many oracle queries to the counterexample oracle547

CX[φ].548

Many complexity lower bounds are easily formalizable as either ∀ΣB1 or ∀ΣB2 formulas in L(VPV) and549

L(V0), where the existential quantifier witnesses a mistake that some Turing machine or algorithm has made550

when attempting to decide a hard language. Applying witnessing theorems to these lower bounds when they551

are provable in bounded arithmetic gives us refuters.552

Suppose, say, VPV were to prove a complexity lower bound formalizable as ∀ΣB2 formula ψ. Applying553

KPT Witnessing, we would then get an P-STCX[φ,r] constructive separation. For a ∀ΣB1 formalizable lower554

bound, Buss Witnessing then directly gives an P-refuter and a P-constructive separation.555
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2.7 Time-Bounded Kolmogorov Complexity556

There are many ways to define time-bounded Kolmogorov complexity [2, 34]. Some choices made in these557

definitions are essentialy arbitrary, like which efficient universal Turing Machine to use. We will specify558

these choices carefully enough to give a particular translation of time-bounded Kolmogorov complexity into559

theories of (bounded) arithmetic, but our results will not depend on the precise formalization. We follow560

Section 2.2 of [36], elaborating on some details.561

Fix a string pair encoding function ⟨·, ·⟩ : {0, 1}+ × {0, 1}+ → {0, 1}+ defined by the map ⟨u, v⟩ 7→562

dbl(u) ◦ 01 ◦ v, where dbl(u) = u1u1 ◦ u2u2 ◦ · · · ◦ u|u|u|u| simply double-prints each bit of u. Denote by π1563

and π2 the left and right extraction functions, so π1(⟨u, v⟩) = u and π2(⟨u, v⟩) = v. These pair encoding and564

element extraction function are linear-time computable and well-defined for all non-empty binary strings.565

Furthermore, delimiter overhead is only incurred for the length of the first string, plus an additive constant:566

∀u, v |⟨u, v⟩| = 2|u|+ 2 + |v|.567

Fix U a Universal Turing machine that can emulate any single-tape Turing Machine M with at most568

polynomial-time overhead. Let runU (M,x, 1t) denote the function that outputs the entire non-blank contents569

of the tape of M simulated on input x for t steps of U . By the assumption that U is efficient, runU can be570

computed in time poly(|M |, |x|, t).571

Finally, the t-time bounded Kolmogorov Complexity Kt(x) of a string x is the length of the shortest572

two-part description d of x such that U decodes d into x:573

Kt(x) = min
d∈{0,1}∗

{|d| : U(π1(d), π2(d), 1
t(|x|)) = x}

The Kt complexity of any string x is at most |x|, because the two-part description can simply “memorize”574

x. Consider the description d = ⟨H,x⟩ where H is the constant-length description of a Turing Machine that575

immediately halts. Because run outputs the contents of the tape of H, this is simply x. Thus we have the576

following577

Fact 2.17. There is an absolute constant c such that for every function t(n) > 0 and every x ∈ {0, 1}+ it578

holds that Kt(x) ≤ |x|+ c.579

Observe that it is important to pay delimiter overhead for the constant-length machine H instead of580

the variable-length string x to obtain the basic fact above. This is implicit in every reasonable definition of581

time-bounded Kolmogorov complexity.582

3 Provability of Palindromes Lower Bounds583

In this section, we generalize the work of Chen et. al. [11] and show that provability of the palindromes lower584

bound in VPV implies circuit lower bounds.585

To do this, we formalize Maass’s lower bound as a ∀ΣB2 L(VPV)-sentence and, assuming VPV ⊢ “Maass”,586

apply the KPT Witnessing theorem. We then assume a complexity upper bound that both collapses the587

Student-Teacher refuter into a P-refuter and causes a contradiction via the argument of [11].588

In Section 3.1, we give a formalization of palindrome lower bounds and discuss its witnessed Student-589

Teacher refuter under VPV-provability. We then give a slightly generalized version of the constructive590

separations argument of [11]. Finally, in Section 3.3, we identify a complexity assumption that both collapses591

the Student-Teacher refuter and allows a standard constructive separations argument to go through.592

3.1 Formalization of One-Tape Nondeterministic Turing Machine Lower Bounds593

First, we state Maass’s theorem in plain English.594

Theorem 3.1 ([38]). The language PAL := {p ∈ {0, 1}∗ | p a palindrome} is not computable by any595

one-tape nondeterministic Turing machine in n1.1 steps.596

To formalize Theorem 3.1, we will need to introduce several functions, all of which are clearly VPV597

function symbols. The symbol ValNTM(·) takes in a string M and outputs 1 if and only if M is a valid598
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encoding (M ∈ LNTM ) of a one-tape nondeterministic Turing machine. We define IsPal(X) to output 1 if599

the string X is a palindrome, and 0 otherwise. Recall that Run(M,X, t,W ) outputs 1 if nondeterministic600

machine M on input X with guess bits W ACCEPTS within t steps. Finally,601

ErriPAL(M,X, t,W ) ≜ (IsPal(X) = i) ∧ (Run(M,X, t,W ) = 1− i).

Let Pal(n0) denote the following sentence.602

Pal(n0) ≜ ∀n (n > n0)∀M (|M | ≤ n/2)∃X (|X| = n)∃WX (|WX | ≤ n1.1)∀W (|W | ≤ n1.1)
ValNTM(M) ∧

(
Err1PAL(M,X, n1.1,W ) ∨ Err0PAL(M,X, n1.1,WX)

)
The formalization covers two cases: either the machine M claims an input X is a palindrome when it is603

not (captured by Err0), or it claims X is not a palindrome when it in fact is (captured by Err1).604

The Student-Teacher Refuter. Assuming VPV ⊢ Pal(n0), for some n0, we have the following Student-605

Teacher game interpretation via the KPT Witnessing theorem.606

Let φ be the innermost ΣB0 formula of Pal(n0), and r be the fixed constant many rounds of the Student-607

Teacher game. A P-Student will take as input 1n and a machine M . In round one, they will query the608

Teacher on a string X and witnessWX where it thinksM incorrectly decides X is or isn’t a palindrome. The609

Teacher will respond with a witnessW that either shows the machineM correctly accepts the palindrome X610

onM(X,W ), or that the proposed witnessWX actually rejects a non-palindrome X.3 This is an P-STCX[φ,r]
611

constructive separation for Maass’s lower bound.612

3.2 Constructive Separations for Palindromes613

In order to collapse Student-Teacher games, we will need small amounts of nonuniformity to replace the614

Teacher’s responses. This generalizes the argument of [11] that P-constructive proofs of Maass’s lower615

bound imply breakthrough circuit lower bounds. Here, we will need P/o(nε)-constructivity.616

Lemma 3.2 (Lemma 3.3, [11]). There exists a one-tape nondeterministic Turing Machine M running in617

subquadratic time that acts correctly on all inputs x with circuit complexity |x|δ, for a fixed 0 < δ < 1.618

Proof sketch. First, on input x, M will guess a log n-input circuit Cx of size nδ and evaluate it on all n619

possible inputs to verify that Cx succinctly represents x. Next, for each 0 ≤ i ≤ n/2, M will evaluate Cx on620

i and n− i and ensure that C(i) = C(n− i). In total, M will run in time n · nO(δ) = o(n2) for a sufficiently621

small constant δ.622

Lemma 3.3 (Generalization of Lemma 2.3, [11]). Assume that P ⊂ SIZE[nk] for some k ≥ 1. Let ε > 0. Then623

for any P/o(nε)-algorithm R(1n) with n output bits, we have that the string R(1n) has circuit complexity624

o(nε).625

Proof. Assume that P ⊂ SIZE[nk] for some k ≥ 1, and let R be a P-algorithm with advice α of length626

|α| = o(nε) which takes in a unary input 1n and outputs an n-bit string. For any ε′ > 0, we can construct a627

new P/(|α|+O(log n))-algorithm R′ where R′ takes as input 1n
ε′

and i ∈ [n] in binary, is given n in binary as628

advice, and outputs the i-th bit of R(1n). This is clearly still a polynomial time algorithm, and by the above629

assumption, has a circuit of size O(nε
′k+o(nε)). Set ε′ = ε/2k to achieve the desired circuit complexity.630

The following is a straightforward generalization of the second item of Theorem 3.4 in [11].631

Theorem 3.4. Let 0 < ε < 1. A P/nε-constructive proof of Maass’ bound implies that P ̸⊂ SIZE[nk].632

Proof. Suppose that P ⊂ SIZE[nk]. Then by combining the above two lemmas, there is a one-tape NTM633

M running in subquadratic time that is correct on all strings which could be output by refuters. This634

contradicts Maass’ lower bound being P/nε-constructive.635

3Note that in the second case, no response from the Teacher is actually needed as a polynomial time Student can check this
condition for themselves.
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3.3 Round Elimination for the Student-Teacher Refuter636

Similar to the round elimination of [8], we show that every query to the counterxample oracle CX can be637

replaced by a sublinear advice string. There are two new ideas compared to previous work.638

(i) Recognize that Teacher in the Student-Teacher refuter is just an NP predicate.639

(ii) By assuming (towards a contradiction) that NP ⊂ SIZE[nk], we can use the Easy Witness Lemma for640

NP to “compress away” Teacher into sub-linear advive, round-by-round.641

Theorem 3.5 (Easy Witness Lemma, [42]). Let k > 0. Suppose that NP ⊂ SIZE[nk]. Then there is a642

constant d > 0 where for any L ∈ NP and Yes-input X, there is a witness W succinctly represented by a643

circuit of size ndk
3

.644

Theorem 3.6. Let r, k be positive integers. Assume that NP ⊆ SIZE[nk]. Then an P-STCX[φ,r]/a(n) refuter645

for Maass implies an P-STCX[φ,r−1]/a′(n) refuter for a(n) = O(nδ) with δ < 1 and a′(n) = C · a(n)O(k3),646

with C > 0 a constant.647

Proof. Let M be a nondeterministic Turing machine clocked to run in time n1.1, and let d be the constant648

appearing in Theorem 3.5. First, we note that without loss of generality, the Student will only propose a649

palindrome to the counterexample oracle. This is because if the Student proposes a non-palindrome, then650

the oracle response can be compressed to 0 bits and completely removed; the Student can check for itself in651

linear time4 that its proposed string X is not a palindrome, and in n1.1 time to simulate M on X and the652

proposed witness WX .653

Let p ∈ {0, 1}n be the first palindrome that the student queries the teacher. As no teacher queries are654

made yet, p is computable in P/a(n). Consider the following NP-language Lwit:655

Lnwit := {x : x ∈ {0, 1}n
1.1

and M(p, x) = 1}.

Note that Lnwit is the set of witnesses to the nondeterministic machine W that takes in 1n as input and656

a string of length a(n) as advice and decides if p is a 1-input to M . Further, we can pad down the input657

to 1n
ε

, for any constant ε > 0, and add n in binary as advice. Pick ε < δ. Hence by Theorem 3.5, there658

exists an x ∈ Lnwit that has circuit complexity (nε + log n+ a(n))
dk3 ≤ (2a(n))dk

3

. We replace the teacher659

by instead giving the student this witness circuit at the beginning of the Student-Teacher game. As a result,660

we change the protocol to have r − 1 rounds of interaction and a(n) + (a(n) + nδ + log n)dk
3

< (4a(n))dk
3

661

bits of advice.662

We then have the following corollaries.663

Theorem 3.7 (Theorem 1.6). If for any nondeterministic one-tape subquadratic time Turing machine M664

there is a P-Student-Teacher game SM (1n) with counterexample oracle CX[φPal, O(1)] solving RefPal,M for665

n-bit inputs, then NP ̸⊂ SIZE[nk] for any k ≥ 0.666

Proof. Suppose there is an P-STCX[φ,r] refuter of constantly many rounds r for Palindromes. Apply Theorem667

3.6 to remove the first teacher query, adding nε bits of advice, for any ε > 0 we desire. Pick ε < 1/
(
100dk3

)2r
.668

Repeatedly apply Theorem 3.6 another r−1 times to have a P/o(n1/100) refuter, we contradict Theorem 3.4.669

670

Theorem 3.8 (Theorem 1.11). If VPV ⊢ Pal(n0), for any n0 > 0, then NP ̸⊂ SIZE[nk].671

Proof. Suppose VPV ⊢ Pal(n0) and that NP ⊂ SIZE[nk] for some k > 0. Then by the KPT-witnessing672

theorem, we get an P-STCX[φ,r] refuter of constantly many rounds r. Applying Theorem 3.7, we have a673

contradiction.674

4Student need not be a one-tape TM, so checking PALINDROME can indeed be linear time.
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4 Existence of Kt-Random Strings675

Hirahara’s lower bound RKt /∈ P for t = qpoly is unconditionally non-constructive [21, 11]. Could we676

extract a related unprovability result for VPV? Non-constructivity was established by using assumed P-677

refuters to print high-Kt strings for t = qpoly in only poly-time — a contradiction [11]. This suggests to678

begin studying VPV-provability of the lower bound “RKt /∈ P” by considering first the simpler statement679

“there exist Kt-random strings,” abbreviated informally as ∃RKt below.680

Even ∃RKt requires some care to express in VPV. Straightforward (i.e., without padding) translation681

of ∃RKt into VPV with t = qpoly is impossible, because VPV-number-terms must have fixed polynomial682

growth. So we study instead provability of a sequence of statements asserting that high-Kn
c

strings exist:683

“for sufficiently large n, there is an n-bit string X with Kt(X) > n/2” where t = nc for each c.684

Formalization 4.1 (HiKt for VPV). Fixing n0, define the following sequence of VPV sentences for each c ∈ N.685

HiKt[c] := ∀n.(n > n0) ∃X.(|X| = n) ∀D.(|D| < n/2) run(π1(D), π2(D), nc) ̸= X

Remark 4.2. The symbol c is not a free variable in a VPV-formula called HiKt. It is rather the parameter of686

a sequence of formulas where “ nc ” abbreviates the constant-length term n · n · n · · · · · n︸ ︷︷ ︸
c occurences of n

.687

Fixing sufficiently large n0, each statement HiKt[c] is true in the standard model by simple counting.5688

Furthermore, the argument is essentially identical for each c, differing only by a substitution of numeric689

terms. Can VPV carry it out? Can VPV prove HiKt via a “uniform” argument, such that the proofs for690

HiKt[c] and HiKt[c′] with c ̸= c′ have a clean quantitative relationship as syntactic objects?691

We make some progress towards answering these questions about provability of the schema HiKt[c] by692

giving lower bounds on Student-Teacher search for Kt-random strings for each fixed t ∈ poly (Section 4.1)693

and proof-theoretic hypotheses under which these lower bounds imply unprovability (Section 4.3).694

4.1 Student-Teacher-Search Lower Bounds for Kt-Random Strings695

First we derive a sequence of search problems from the schema HiKt as described in Section 2.6. Extract the696

quantifier-free part of HiKt[c] for each c as:697

ψc(n,X,D) := (|D| ≤ n/2 ∧ n > n0)→ (run(π1(D), π2(D), nc) ̸= X ∧ |X| = n)

Because HiKt[c] is true in the standard model for every c, the problem Searchψc
is total and well-defined for698

every c. To ease notation, we spell out and abbreviate these search problems below.699

Definition 4.3 (Search for Kt-Random Strings). For each c ∈ N, abbreviate the problem Searchψc by700

∃HiKt[c] := {(1n, X) | Kn
c

(X) > n/2 ∧ |X| = n}

An answer to the counterexample query X for ∃HiKt[c] is binary string D that is701

1. short, so |D| < n/2 and702

2. describes X, so D = ⟨M,A⟩ with M run on input A for at most nc steps halts with X on the tape.703

Any such D is a valid counterexample to the claim “Kn
c

(X) ≥ n/2.” Having fixed terminology, we are ready704

to state and prove our lower bounds aginst Student-Teacher search for Kt-random strings.705

The base case — Students that make no queries — is implicit in Proposition 1.8 of [11]. Generalizing the706

“indexing template” embedded in that proof yields our construction. Their argument is paraphrased below.707

Proposition 4.4. For c ≥ 1, no student running in time Õ(nc) and making zero queries solves ∃HiKt[c+1].708

5The constant n0 need only be large enough to ensure that run(π1(D), π2(D), nc
0) is well-defined for |D| ≥ n0/2. Thus n0

can be fixed to an absolute constant depending only on the machine and pair encoding implicit in the run and π functions.
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Proof. Suppose S is a student that runs in time Õ(nc) and solves ∃HiKt[c+ 1] without making any queries.709

Denote by ℓ the description length of S, fix arbitrary n ∈ N, and let xn = S(1n) be the n-bit Knc+1

-random710

string found by S. Define the indexing of S to be the standard, one-tape Turing Machine ix(S) that results711

from substituting S into the Indexing Template (Algorithm 1). Because S makes no queries, it can indeed712

be simulated by a standard one-tape Turing Machine.713

By construction, ix(S), given input n encoded in binary, prints xn. This takes Õ(nc) steps for a larger714

polylog factor than in the original runtime of S, accounting for time to print 1n onto the worktape and715

to run S(1n). The description length of ix(S) is just ℓ + a for an absolute constant a depending on the716

universal machine and book-keeping code to expand the binary representation of n into 1n. Therefore, the717

pair ⟨ix(S), bin(n)⟩ witnesses Knc+1

(xn) ≤ 2(ℓ+ a) + log n+2 — a contradiction for sufficiently large n.718

Algorithm 1 Indexing Template ix(S)

Parameters S the description of a Turing machine
1: On input bin(n)
2: output S(1n)

Observe that an = ⟨ix(S), bin(n)⟩ is a uniform counterexample to the claim “xn is a Kt random string”719

for any zero-query student and sufficently large n. This suggests that even if a student S for ∃HiKt does720

make queries, the description of S could be used to answer and eliminate them. Two-parameter indexing —721

tracking both n and number of queries made by S(1n) — suffices to realize this intuition (Algorithm 2).722

Theorem 4.5. For c ≥ 1, no student running in time nc solves ∃HiKt[c+ 1].723

Proof. Suppose S is a student of description length ℓ running in time nc that solves ∃HiKt[c + 1] using at724

most r(n) < nc queries. By Proposition 4.4, it is immediate that r(n) ≥ 1. We will eliminate these queries725

by constructing a uniform sequence of valid answers — derived from S itself — that are easy to produce726

without a teacher. Before arguing for validity, we show that such a “reflection exchange” of answers and727

queries is well-defined and establish some basic properties (Claim 4.6).728

More precisely, to generate counter-examples for S from the description of S, we must convert S into a729

standard, one-tape Turing machine (TM) — because ∃HiKt is defined with respect to this particular model730

of computation. The Reflection Template transforms any student S into a standard Turing machine rf(S)731

by substituting the description of S into Algorithm 2 below. For each standard one-tape Turing machine M ,732

write ⌜M⌝ for the binary encoding of M induced by the particular universal machine used to define ∃HiKt.733

We can now state734

Claim 4.6. There is a standard one-tape Turing machine rf(S) such that, fixing the sequence of answers735

an,j = ⟨⌜rf(S)⌝, ⟨⌜rf(S)⌝, ⟨bin(n), bin(j)⟩⟩⟩ and denoting by qn,i the induced sequence of queries736

qn,i = “the i-th query made by S(1n) after getting an,j in response to the j-th query for j ∈ {1, . . . , (i−1)},”737

the following properties hold:738

1. rf(S) on input ⟨⌜rf(S)⌝, ⟨bin(n), 1⟩⟩ prints the first query made by S(1n).739

2. rf(S) on input ⟨⌜rf(S)⌝, ⟨bin(n), bin(i)⟩⟩ prints qn,i.740

3. rf(S) runs in time O(ℓ+ nc log n) on all inputs of the form ⟨⌜rf(S)⌝, ⟨bin(n), bin(j)⟩⟩.741

4. The description length of rf(S) is ℓ+ arf for some absolute constant arf .742

Proof. Observe that “running rf(S) on appropriate inputs” is exactly a constructive definition of the queries743

qn,i for each n and i < r(n). All claimed properties follow by inspection and simulation of rf(S) because S is744

deterministic and time-bounded. None of these assertions are about the validity of answers an,j as responses745

to queries qn,i — they assert only that both sequences are well-defined and can be obtained in bounded time746

by running and manipulating the description of rf(S).747

To eliminate q ≥ 1 queries from S, we answer them with a description of the reflection template applied748

to S — the standard machine rf(S). The Autodidact Template transforms any student S making at most749

r(n) queries into a student ad(S, q) making at most r(n)− q queries by substituting the description of S and750

bin(q) into Algorithm 3 below. Preservation of correctness and runtime guarantees is751
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Algorithm 2 Reflection Template rf(S)

Parameters S a student
1: On input ⟨D, ⟨bin(n), bin(q)⟩⟩
2: i← 1 ▷ assumption: S makes at least one query
3: loop
4: qn,i ← Simulate S(1n) until it queries teacher
5: if i < q then
6: Answer the simulated query qn,i with ⟨D, ⟨D, ⟨bin(n), bin(i)⟩⟩⟩ ▷ exactly an,i when D = ⌜rf(S)⌝
7: i← i+ 1
8: else
9: break the loop

10: output qn,i ▷ the last query from simulated S(1n)

Claim 4.7. Student ad(S, q) runs in time O(nc log n) and solves ∃HiKt[c+ 1] using at most r(n)− q queries.752

Proof. We argue by induction, showing first that student ad(S, 1) solves ∃HiKt[c + 1] within the claimed753

runtime and makes at most r(n) − 1 queries. Consider the set of first queries qn,1 asked by S(1n) for each754

n. These strings depend only on S and n — so intuitively, their Kn
c+1

-complexity is bounded. Formally, the755

machine rf(S) on input ⟨⌜rf(S)⌝, ⟨bin(n), 1⟩⟩ prints qn,1 for each n in at most O(nc log n) steps (items 1 and756

3 of Claim 4.6). Therefore, the machine-input pair757

⟨⌜rf(S)⌝, ⟨⌜rf(S)⌝, ⟨bin(n), 1⟩⟩⟩ = an,1

of length O(ℓ) +O(log n) witnesses Kn
c+1

(qn,1) < n/2 for all sufficiently large n. Thus, for sufficiently large758

n, the string an,1 supplied to S(1n) by line 6 of ad(S, 1) is a valid answer to query qn,1. By the assumption759

that S solves ∃HiKt[c+ 1], it must produce an element of RKnc+1 given any sequence of valid answers from760

teacher of length at most r(n). Therefore, the simulation of S(1n) executed by ad(S, 1) will solve ∃HiKt[c+1]761

using at most r(n) − 1 queries to a real teacher, because an,1 is a valid answer to qn,1. Accounting for the762

time complexity of simulation and string manipulation, rf(S, 1) takes at most O(nc log n) steps on inputs 1n.763

This concludes the base case.764

For the inductive step, suppose that student ad(S, i) solves ∃HiKt[c + 1] using at most r(n) − i queries.765

Inspecting the autodidact template we have that, when running ad(S, i): (1) all queries made by S until the766

(i+ 1)-th query are answered by an,j for j ∈ {1, . . . , i} and (2) query qn,(i+1) is the first query answered by767

teacher. Because ad(S, i) is a student solving ∃HiKt[c+ 1], it must produce an element of RKnc+1 given any768

sequence of valid answers from teacher of length at most r(n)− i. We argue that an,(i+1) is a valid answer769

to query qn,(i+1).770

The standard, one-tape machine rf(S) on input ⟨⌜rf(S)⌝, ⟨bin(n), bin(i+ 1)⟩⟩ prints qn,(i+1) in at most771

O(ℓ+ nc log n) steps (items 2 and 3 of Claim 4.6). Therefore, the machine-input pair772

⟨⌜rf(S)⌝, ⟨⌜rf(S)⌝, ⟨bin(n), bin(i+ 1)⟩⟩⟩ = an,(i+1)

of length at most O(ℓ) + O(log n) + O(log r(n)) (by item 4 of Claim 4.6) witnesses Kn
c+1

(qn,(i+1)) < n/2773

for all sufficiently large n, because we know r(n) < nc from the runtime bound of S. Therefore, student774

ad(S, i + 1) correctly simulates one additional teacher response for S compared to ad(S, i) and so solves775

∃HiKt[c+ 1] using at most r(n)− (i+ 1) queries. Induction on i now proves Claim 4.7.776

Now conclude the proof of Theorem 4.5 by substituting q = r(n) into Claim 4.7 to get that ad(S, q) solves777

∃HiKt[c+ 1] using zero queries in Õ(nc) time, contradicting Proposition 4.4.778

4.2 Gap Between Student-Teacher Search Lower Bounds & VPV-Unprovability779

The Student-Teacher search lower bounds above do not suffice to obtain VPV-unprovability. Suppose VPV780

proves HiKt[c] for every c. Applying KPT-witnessing, we would obtain for every c a DTIME[qc] Student-781

Teacher search solving ∃HiKt[c], for some arbitrary polynomial qc. There is no contradiction to Theorem 4.5,782
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Algorithm 3 Autodidact Template ad(S, q)

Parameters q ∈ N and S a student
1: On input 1n

2: i← 1 ▷ assumption: reflect at least one query
3: loop
4: qn,i ← Simulate S(1n) until it queries teacher
5: if i ≤ q then
6: Answer the simulated query qn,i with an,i = ⟨⌜rf(S)⌝, ⟨⌜rf(S)⌝, ⟨bin(n), bin(i)⟩⟩⟩
7: i← i+ 1 ▷ increment #queries reflected
8: else
9: break the loop

10: Continue simulating S(1n) but answer all subsequent queries by asking teacher
11: output the output of simulated S(1n)

because it does not control the relationship between nc and qc. However, if qc = Õ(nc) could be guaranteed783

for even a single c, then unprovability of the HiKt schema in VPV would follow.784

One way forward is to make a stronger assumption about the supposed VPV-proofs of HiKt[c]. In larger785

theories than VPV that are known to prove HiKt[c] for each c, the proofs are uniform — essentially the same786

for each c. An assumption like “VPV proves HiKt[c] for each c and furthermore the proofs are structurally787

uniform” could enable control over Student runtime, such that a single polynomial-time algorithm witnesses788

Kt-random strings for every t ∈ poly.789

Such dramatic consequences of uniform proofs might seem unrealistic; the term nc appears in the790

quantifier-free part of HiKt[c], so shouldn’t any student witnessing HiKt[c] take time at least nc? This791

appealing but flawed intuition presumes that witnessing requires simulation of an nc-time machine. In re-792

ality, Teacher may be the only party responsible for an nc-time computation — it depends on the scheme.793

In Section 4.5 we give several examples of VPV schemata Φ[c] parameterized by arbitrary polynomial time794

bounds nc — with quantifier prefix identical or similar to HiKt[c] — where both (1) each statement is prov-795

able in VPV for every c by the “same” proof and (2) witnessing the statement takes absolute polynomial796

time — not nc for each c.797

Summarizing the above, it is both plausible and well-motivated to ask for better control over the com-798

plexity of witnessing terms when VPV proves a parameterized sequence of theorems by “essentially the same”799

proof. This requires a definition of uniform proofs. Towards this end, we discuss next a similar question800

about Peano Arithmetic (PA) and extract a witnessing hypothesis for uniform VPV-proofs by analogy.801

4.3 Kriesel’s Conjecture & Witnessing Hypotheses for Uniform Proofs802

A fundamental question about “merging” a sequence of theorems into a single theorem appeared in 1975 as803

Problem 34 on Friedman’s list of One Hundred and Two Problems in Logic, attributed to Kriesel [20]. For804

some theories, a positive answer to this question would imply uniform witnessing.805

Conjecture 4.8 (Kriesel’s Conjecture, §4.4 of [48]). Suppose for a formula φ(x) and a number k, one can806

prove φ(Sc(0)) in Peano Arithmetic using ≤ k steps for every c. Then ∀cφ(c) is provable in Peano Arithmetic.807

Efforts to resolve Kriesel’s Conjecture (KC) uncovered a peculiar situation: KC is very sensitive to how808

PA is axiomatized! For example, KC is true when PA is axiomatized with a ternary relation for multiplication809

[45, 40] or with minimality instead of induction [23]. But KC is false when PA has a function symbol for810

subtraction [22], and remains open for the “textbook” presentation of PA using function symbols {S,+,×}.811

Hrubeš discusses these issues in detail [23].812

Let PAL denote the theory of Peano Arithmetic with symbols for every primitive recursive function,813

axiomatized by a list L of formulas. If KC is true for PAL, then it is straightforward to extract parameter-814

independent witnessing terms from a sequence of proofs: just apply KC followed by KPT witnessing. This815

interchanges the order of quantifiers as desired: a single sequence of witnessing terms that works for all816

sentences in the schema. One intermediate step is required — PA is not a universal theory, and so KPT817

does not apply directly. We work out the details below for ∃KtR, towards developing a uniform witnessing818
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hypothesis for the weaker theory VPV by analogy. First recall the KPT theorem, stated below for single-819

sorted theories.820

Theorem 4.9 (Single-Sorted KPT). Let T be a universal theory with vocabulary L. Let φ be an open821

L-formula, and suppose that T ⊢ ∀x⃗ ∃y ∀z φ(x⃗, y, z). Then there is a finite sequence t1, . . . , tr of L-terms822

such that823

T ⊢ ∀x⃗ ∀z1, . . . zr[φ(x⃗, t1(x⃗), z1) ∨ φ(x⃗, t2(x⃗, z1), z2) ∨ · · · ∨ φ(x⃗, tr(x⃗, z1, . . . , zr−1), zr)]

Now translate “for every c and almost every n, there exists a Kn
c

-random string of length n” into a824

PA-formula. Because PA-terms are not bounded by polynomials, here we can admit the runtime exponent c825

as a free variable. Fixing sufficiently large n0, define826

HiKt(c) := ∀n.(n > n0) ∃x.(x < 2n) ∀d.(d < 2n/2) run(π1(d), π2(d), unary(exp(n, c))) ̸= x

For every reasonable list of axioms L, if PAL includes all primitive recursive functions, it includes the827

necessary function symbols and proves their relevant properties.828

• unary(w) is the PAL symbol for the function that outputs z such that bin(z) = 1w, and829

• exp(n, c) is the PAL symbol for the exponentiation function nc.830

• run is the PAL function symbol for runU from the definition of time-bounded Kolmogorov complexity,831

• π1(z) and π2(z) are the PAL symbols for the pair decoding functions (see Section 2.7).832

Again, this translation of ∃KtR exploits the power of PA to admit c as a variable of the object language.833

Proposition 4.10. Suppose KC is true for PAL and there exist absolute constants n0 and k such that one834

can prove HiKt(Sc(0)) in PAL using ≤ k steps for every c. Then, letting PA′
L be any universal conservative835

extension of PAL, there is a finite sequence of PA′
L-terms q1, . . . qr such that836

PA′
L ⊢ ∀c ∀n.(n > n0) ∀d1, . . . , dr

[
(run(π1(d1), π2(d1), unary(exp(n, c))) ̸= q1(n, c)) ∨

(run(π1(d2), π2(d2), unary(exp(n, c))) ̸= q2(n, c, d1)) ∨
. . . ∨

(run(π1(dr), π2(dr), unary(exp(n, c))) ̸= qr(n, c, d1, . . . dr−1))

]
Proof. Assume that PAL proves HiKt as in the statement of the lemma, and KC is true of PAL. Applying837

KC, we have PAL ⊢ ∀c HiKt(c) for some absolute constant n0. Now let PA′
L be any universal conservative838

extension of PAL. Because PA′
L extends PAL, we also have PA′

L ⊢ ∀c HiKt(c). Because PA′
L is universal,839

appeal to KPT witnessing (Theorem 4.9) concludes this proof.840

4.4 Conditional Unprovability of HiKt[c] in VPV and V1
841

By analogy to the outcome of assuming KC and applying KPT to a conservative universal extension of PA,842

introduce the following843

Hypothesis 4.11 (Witnessing for Linecount-Uniform VPV-Proofs). Let φ(n, p,X, Y ) be a ΣB0 (VPV) formula844

with all free variables displayed. Suppose there is an absolute constant n0 , number k, and VPV-term t such845

that one can prove ∀n.(n > n0) ∃X.(|X| < t(n)) ∀Y φ(n, nc, X, Y ) in VPV using ≤ k steps for every c. Then846

there is a finite sequence F1, . . . Fr of VPV-function symbols that are absolutely witnessing :847

for every c, VPV ⊢ ∀n.(n > n0) ∀Y1, . . . , Yr
[
φ(n, nc, F1(n, c), Y1) ∨

φ(n, nc, F2(n, c, Y1), Y2) ∨
· · · ∨

φ(n, nc, Fr(n, c, Y1, . . . Yr−1), Yr)

]
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The asymmetry in how c is given to φ compared to how c is given to each Fi — nc vs. c — is crucial for848

our applications. If Hypothesis 4.11 holds, then any student derived from the hypothesis takes arguments 1n849

and 1c because numeric terms are supplied in unary for two-sorted complexity classes (see Section 2.4). If c850

were instead given to Fi as n
c, the implicit student would take poly(nc) time to print Knc

-random strings of851

length n— and no contradiction would arise. However, combining Hypothesis 4.11 with the Student-Teacher852

lower bounds for ∃HiKt from the last section (Theorem 4.5), we have853

Corollary 4.12. Under the Witnessing Hypothesis for Linecount-Uniform VPV-Proofs, there is no fixed k854

such that one can prove HiKt[c] in VPV using ≤ k steps for each c.855

This would rule out linecount uniform proofs of HiKt[c]. However, linecount uniformity — though well-856

motivated by Kriesel’s Conjecture — is certainly not the only reasonable notion of uniformity in proofs. We857

hope that a deeper understanding of uniform VPV-proofs will emerge by studying witnessing hypotheses858

that emphasize different aspects of common structure in theorems and proofs. To begin the investigation,859

we introduce a strong witnessing hypothesis that emphasizes the common element in statements like HiKt[c]860

— substitutuion of polynomial time-bounds into the execution of Turing machines, formalized as861

Definition 4.13 (poly-Runtime Schema). Fix a universal function symbol run(M,A, s) to output the tape862

of machineM run on input A for s steps. An infinite sequence of formulas Φ is a poly-runtime schema if Φ is863

obtained by taking an infinite union over substitution of polynomial runtimes. Formally, let φ be a formula864

with free a variable p occuring only in terms of the form run(M,A, p) — as the time bound. Then,865

Φ =
⋃
c∈N

φ(p/nc)

We refer to the c-th sentence in such a schema by Φc.866

Hypothesis 4.14 (Witnessing for poly-Runtime Schema in VPV). Suppose Φ is a poly-runtime schema with867

φ = ∀n.(n > n0) ∃X.(|X| < t(n)) ∀Y ψ(n, p,X, Y ) for ψ a ΣB0 (VPV) formula and t a VPV-term, and there868

is an absolute constant n0 such that VPV ⊢ Φ. Then there is a finite sequence F1, . . . Fr of VPV-function869

symbols that are absolutely witnessing :870

for infinitely many c, VPV ⊢ ∀n.(n > n0) ∀Y1, . . . , Yr
[
ψ(n, nc, F1(n, c), Y1) ∨

ψ(n, nc, F2(n, c, Y1), Y2) ∨
· · · ∨

ψ(n, nc, Fr(n, c, Y1, . . . Yr−1), Yr)

]
The conclusion is essentially identical to that of the linecount WHUP. However Hypothesis 4.16 is much871

stronger: it asserts that VPV cannot help but give absolute witnessing if it proves a poly-runtime schema.872

Therefore, combining Hypothesis 4.16 with the Student-Teacher lower bounds for ∃HiKt from the last section873

(Theorem 4.5), we have874

Corollary 4.15. Under the Witnessing Hypothesis for poly-Runtime Schemas in VPV, there are infinitely875

many c such that VPV does not prove HiKt[c].876

Under Hypothesis 4.16, we get VPV-unprovability of HiKt[c], but not V1 unprovability. This under-877

exploits our Student-Teacher lower bounds for ∃HiKt, which can eliminate poly-many rounds from Student.878

So, we introduce an appropriate WHUP for V1 — derived from the KPT Theorem for V1 (Theorem 2.15).879

Hypothesis 4.16 (Witnessing for poly-Runtime Schema in V1). Suppose Φ is a poly-runtime schema with880

φ = ∀n.(n > n0) ∃X.(|X| ≤ t(n)) ∀Y ψ(n, p,X, Y ) for ψ a ΣB0 (V
1) formula and t a V 1-term, and there is an881

absolute constant n0 such that V1 ⊢ Φ. Then there is an absolutely witnessing FP function F such that for882

infinitely many c,883

N2 |= ∀n.(n > n0)∀Y ψ(n, nc, FCX[Φc], Y )
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Corollary 4.17. Under the Witnessing Hypothesis for poly-Runtime Schemas in V1, there are infinitely884

many c such that V1 does not prove HiKt[c].885

These two corollaries imply separations with Jeřábek’s theory VAPC.886

Theorem 4.18. VAPC ⊢ HiKt[c], for all c ∈ N. Further, under Witnessing Hypotheses, VPV ̸⊢ HiKt[c] and887

V1 ̸⊢ HiKt[c].888

Proof. It was shown by Korten [27] that VAPC ⊢ HiKt[c].889

We spend the remainder of this section addressing the plausibility of these hypotheses, by giving examples890

of VPV-theorems that do enjoy absolute witnessing despite varying polynomial bounds.891

4.5 Examples of Schemata With “Uniform” Proofs & Absolute Witnessing892

The WHUPs discussed in this section apply to VPV-schemata of the form893

Φ[c] := ∀n.(n > n0) ∃X ∀Y φ(nc, X, Y )

where φ(p,X, Y ) is ΣB0 for each c ∈ N. Here we give examples of simple VPV-theorems to illustrate that894

this class of schemata is non-trivial. All these examples have both proofs that are identical up to numeric895

substitutions and witnessing algorithms that run in some absolute polynomial time — not nc for each c.896

Therefore, no contradiction can arise from assuming a WHUP (and constant-line proofs) for any of these897

theorems. The WHUP would just “automatically” transform proofs into witnessing algorithms that meet898

known complexity upper bounds. The common element in all these examples is efficient transformation899

of encoded Turing Machines. For each example we describe the VPV-translation and carefully discuss the900

complexity of witnessing. We do not argue for VPV-provability, because all these theorems follow from901

properties of universal machines and lemmas about efficient string manipulation that are readily available902

in VPV — see the discussion in Sections 2.1 and 4 of [47].903

4.5.1 Machine Templates904

The first three examples give basic properties of machine-only Kolmogorov complexity. Fix a universal905

Turing machine U and define the machine-only t-time bounded Kolmogorov Complexity moKtU (x) of a string906

x as the length of the shortest encoded machine that prints x when simulated by U :907

moKtU (x) = min
d∈{0,1}∗

{|d| : U(d, ε, 1t(|x|)) = x}

This definition is brittle compared to standard time-bounded Kolmogorov complexity. The UTM never908

provides any input to the encoded machine d, forcing d to “hardcode” useful strings instead of reading them909

from an input tape. Therefore the basic fact about Kt — ∀xKt(x) < |x| + a for an absolute constant a910

— fails. However, we can recover something similar for moKt, even in VPV: an uniform upper bound on911

moKt(x) for every x.912

Memorization Templates. For every polynomial time bound t, for every string length n, there is a913

hardcoded-string “template” machine M of length n, such that any string X of “sufficiently smaller” length914

can be pasted into the template to produce a new machine M ′. The machine M ′ prints X in less than t915

time. Pasting is a polynomial-time string function that copies the bits of Y into a sequence of states of M .916

We formalize this as a VPV-schema below, varying the polynomial time bound.917

MEMT[n0, c] := ∀n.(n > n0) ∃M.(|M | = n) ∀X.(|X| ≤ n/16) runU (pasteU (M,X), nc) = X

VPV cannot quantify over arbitrary polynomial time bounds, but it can prove the MEMT schema via an918

essentially-identical proof for each c. However, no contradiction can arise from a WHUP because it is easy919

to witness M : print the U -encoding of a Turing Machine that prints an explicit all-zero string instead of an920

implicit all-zero string. That is, the ith state of M is “write 0 to the tape, move the head right, transition921

to state i+1.” The paste function replaces the “write 0” element of state i of M with bit X(i). The content922
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of this simple theorem is the gap between n and |X| — it asserts an upper bound on the cost of memorizing923

a string relative to some fixed model of computation and encoding of machines shared by runU and pasteU .924

Notice that witnessing M in this example takes linear time completely independant of c. This is more925

restrictive than the consequences of a WHUP, which allows witnessing algorithms to take 1c as an argument.926

Our next example actually exploits this dependence.927

Clocking Templates. For every polynomial time bound p, for each sufficiently large n, a “template”928

machine M of length n enforces a p-step timeout on shorter machines, making sure they halt in time p929

and signalling a fault if they run too long. We’ll formalize this in VPV using a pair encoding function: the930

clocking template applied to machine description D outputs ⟨h, run(D, ε, nc)⟩ where h is 1 if D halted within931

nc steps and zero otherwise. Consider the following collection of VPV-theorems CLOCKT[n0, c] :=932

∀n.(n > n0) ∃M.(|M | = n) ∀D.(|X| ≤ n/16)(halt(D, ε, nc)→ run(paste(M,D), ε, n2c) = ⟨1, run(D, ε, nc)⟩)
∧ (¬halt(D, ε, nc)→ run(paste(M,D), ε, n2c) = ⟨0, run(D, ε, nc)⟩)

Once again, there is a straightforward witnessing for M : print the U -encoding of a machine that explicitly933

prints the all-zero string Z of length n/16 to the worktape (as in the memorization template), and then runs934

a nc-clocked U to simulate Z. Pair the worktape contents of the results with 0 or 1 depending on if Z halted.935

The paste function then replaces the explicitly-coded Z with the encoding of D, resulting in a template with936

the desired behaviour.937

Witnessing this template actually depends on c: the clock requires c log(n) hardcoded bits in the descrip-938

tion of M . However, this dependence is not polynomial: for sufficiently large n, c log(n) < n. Inspecting the939

WHUPs for VPV (Hypotheses 4.11, 4.16) we see that the witnessing function symbols occur as F (n, c, . . . ),940

meaning that n and c are given in unary to the witnessing algorithm. Therefore, in fixed poly(n, c) time we941

can hardcode the binary representation of nc into a clock. This is an example where the straightforward942

witnessing has exactly the complexity implied by a WHUP.943

Clocked Unrolling Templates. VPV can also discuss a local formulation6 of machine-only Kt(x), which944

bounds the time complexity of producing each individual bit xi of x given i in binary. Consider the following945

polynomial-time function, which “unrolls” a given machine into an n-bit string — essentially a machine946

analog of the truth-table generator for circuits [30].947

Algorithm 4 Unrolling a Machine, Unroll(D,n, nc)

Parameters n in unary, nc in unary
1: for all i ∈ {0, . . . , n} do
2: if D run on input bin(i) accepts within nc steps then
3: Print 1
4: else
5: Print 0

For every polynomial time bound p, for each sufficiently large n, a “template” machine M of length n948

can extract an n-bit vector of p-step decisions from sufficiently shorter machines. That is, pasting a shorter949

machine D into M and running the result agrees with Unroll(D,n, p). Translating into VPV define the950

schemea UNROLLT[n0, c] :=951

∀n.(n > n0) ∃M.(|M | = n) ∀D.(|D| ≤ n/16) runU (pasteU (M,D), ε, n2c+1) = Unroll(D,n, nc)

Witness M in poly(n, c) time by printing an appropriate U -encoding of Algorithm 5 below.952

To accomodate paste, implement line 1 ofM by explicitly printing 0 symbols — one state per symbol, exactly953

as in the previous two templates. Implement lines 3 and 4 by maintaining binary counters on the worktape.954

This requires O(log n) and O(c log n) bits to be hardcoded in M , respectively. Finally, the code of Unroll955

takes some absolute constant number of bits in the encoding of M . Just as above, printing M takes fixed956

polynomial time given (1n, 1c) as input.957

6A local formulation of standard Kt complexity appears, for example, as Definition 3 of [37] where a hardness assumption
about deciding local Kt is used in a direct and elegant construction of pseudo-random functions.
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Algorithm 5 Unrolling Template

Parameters D the description of a machine, n in unary, nc in unary
1: Write 0n/16 to the worktape
2: Move the head two cells right — leaving a blank
3: Write 1n to the worktape
4: Move the head two cells right — leaving a blank
5: Write 1n

c

to the worktape
6: Run Unroll on the contents of the worktape, with arguments separated by blanks

4.5.2 Deterministic Time Hierarchy Theorem958

Consider the compressible-counterexample deterministic time hierarchy theorem, used to obtain Student-959

Teacher lower bound for constructing circuits [8].960

Lemma 4.19. For every c ∈ N, there is a language Hc ∈ DTIME[nc+1] satisfying the following:961

• Counterexamples: Every candidate nc-time TM M that tries to compute Hb will make a mistake962

on an n-bit input xerror = ⌜M⌝ ◦ π where ◦ denotes concatenation and π ∈ 0∗ is a padding string963

chosen to make |xerror| = n for all sufficiently large n.964

• Compressibility of Counterexamples: The counterexamples xerror are efficiently compressible to965

O(log(n)) bits by recording both the constant-length description M and n in binary, by just padding966

M to the appropriate length.967

Though the diagonalization machine Hc uses time O(nc+1), the implicit refuter uses only time O(n) —968

and is the same regardless of which polynomial “slice” of the hierarchy is being refuted! The deterministic969

time hierarchy theorem has a straightforward translation into a sequence of VPV-sentences.970

Formalization 4.20.

DTIMEH[c] := ∀n ∀M.(|M | < n/16) ∃X.(|X| = n) run(M,X, nc) ̸= run(Hc, X, n
c+1)

This is a simpler formula than the VPV-schemata Φ[c] used in WHUPs, because the quantifier prefix is971

∀∃ instead of ∀∃∀. We know that VPV ⊢ DTIMEH[c] for each c, and each proof is “essentially the same”972

up to substitution of nc (Lemma 3.1 of [31]). Therefore, Buss Witnessing (Theorem 2.13) applies and we973

immediately get refuters for Hc. But the uniformity is not expoited by Buss Witnessing – we get a sequence974

of refuters with arbitrary and unrelated polynomial runtime for each c, and indeed each runtime may be975

much larger than nc. This is much worse than the absolute refuter obtained outside VPV.976

In this simpler setting, is there a generic way to convert such uniform collections of proofs into absolute977

witnessing that we already know exists? To further assess the plausibility of such convenient witnessing, we978

let wH be the VPV-term given by the compressible counterexamples of Lemma 4.19 and ask the following979

Question 4.21. Does VPV prove that wH witnesses the DTIMEH[c] errors for each c?980

4.5.3 Efficient Conversion From Multi-Tape to One-Tape Turing Machines981

It is a classical theorem that for k ≥ 2 any k-tape Turing Machine can be simulated by a one-tape Turing982

Machine with at most quadratic overhead.983

Theorem 4.22 (Claim 1.6 of [3]). If the language L can be decided in time nc on a k-tape Turing Machine,984

then L can be decided in time 16kn2c on a single-tape Turing Machine.985

Formalize this in VPV by defining the function symbols runk and run1 to simulate k-tape and single-tape986

Turing Machines, respectively. Then consider the following collection of VPV-theorems ONE.TAPE[n0, k, c] :=987

∀M ∃M ′ ∀n.(n ≥ n0) ∀X.(|X| = n) runk(M,X, nc) = run1(M
′, X, 16kn2c)

This quantifier prefix is identical to that of Φ[c], but the types are different: strings instead of numbers.988

Therefore, a witnessing algorithm for ONE.TAPE is given M encoded in binary and must print the encoding989
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of M ′. The encoding length |M | under any reasonable encoding — which we fix using runk — is determined990

by the number of states and alphabet size. The number of states in M ′ given by straightforward proofs991

of Theorem 4.22 is exponential in k but linear in the states and alphabet-size of M . Therefore, in a fixed992

polynomial time in |M |, a witnessing algorithm prints M ′. Only the transformation of the “code” of M993

matters to the witnessing algorithm — not the runtime bound on M .994

5 Consequences of Provably Hard Truth Tables995

Under a natural witnessing hypothesis for a theory corresponding to uniform AC0[qpoly], we have P ̸= NP.996

5.1 A Theory for AC0[qpoly]-Reasoning997

In Section 2.4, we recalled the two-sorted theory V0 which corresponds to log-uniform AC0 circuits. Here,998

we extend the definition to a new theory denoted V0
#, corresponding to polylog-uniform AC0[qpoly]. The999

definition of V0
# is very simple: starting from the axioms of V0 and language L(V0), add the function symbol1000

#, commonly known as the smash operator, to the language and defining axioms of V 0. Smash is defined1001

by axioms stating x#y = 2|x|·|y|, for numbers x, y. It is used to give quasipolynomial growth rates of the1002

number type.1003

The characterization of V0 with uniform AC0 is carried out in detail in Chapters IV and V of [17]. They1004

treated AC0 as the logtime-hierarchy LH, known to be equivalent to logtime-uniform AC0.1005

Theorem 5.1 (Folklore). log-uniform AC0[poly] = LH.1006

Importantly, this is generalizable to the polylog-hierarchy polyLH.1007

Theorem 5.2 (Folklore). polyLH = polylog-uniform AC0[qpoly]1008

Cook and Nguyen showed that all logtime-uniform AC0-functions are ΣB1 -definable in V0, as well as the1009

converse witnessing theorem that any ∀ΣB1 sentence provable in V0 has its existential quantifier witnessed1010

by a logtime-unform AC0 function.1011

This correspendence holds for uniform AC0[poly], but generalizes to any class of circuit sizes that is closed1012

under composition, with the appropriate modification of the language and axioms. By adding the smash1013

operator #, it is standard to get an identical correspondence between polylog-uniform AC0[qpoly] and V0
#.1014

We believe this theory is of independent interest, and will discuss it’s strength at the end of the section.1015

5.2 Stating Existential Circuit Lower Bounds in L(V0
#)1016

We first give a logical translation of the classical lower bound due to Shannon.1017

Theorem 5.3 (Shannon Counting). Let b > 0. For every sufficiently large N , there exists a truth table X1018

of length N which is not succinctly represented by any |N |-input circuit of size |N |b.1019

Normally, it would be impossible to describe such a lower bound in L(V0) or L(V0
#), as it involves1020

evaluating general circuits, instead of AC0 circuits. However, because our feasible objects will be truth1021

tables of length 2n, we can evaluate general circuits of each fixed polynomial size nc in size qpoly(2n)-AC0.1022

While we normally reserve capital letters for string-types, we will use N to refer to 2n in this section. More1023

formally, we use the following folklore lemma about AC0 evaluation of general circuits.1024

Lemma 5.4 (Folklore). Let k > 0. There is a polylog-uniform AC0 circuit of size N log(N)3k which on input1025

the DCL encoding of a general circuit C of size nk and an input x of n bits, outputs C(x).1026

Proof. By a standard counting argument, it is known that there are at most 2O(s(n) logn) circuits of size s(n).1027

As a DCL representation of a size s(n) circuit is a string of length at most s(n)2, we have that there are1028

at most 2O(s(n)2 logn) DCL strings of size s(n) circuits. Plugging in s(n) = nk, we get that there are up to1029

2O(n2k logn) = O(N (logN)3) DCL strings of size nk circuits.1030

We construct an AC0 circuit E to evaluate any size nk general circuit as follows:1031
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1. Circuit Lookup Layer: Have a multiplexer identify the which circuit C has been input1032

2. Input Lookup Layer: Have a multiplexer identify the circuit input x which has been specified.1033

3. Evalutation Layer: Output the memorized evaluation of indentified circuit C and input x.1034

Uniformity. Normally, the above circuit would be highly non-uniform. However, in the size regime of1035

N = 2n, this becomes feasible. A polylog-uniformity algorithm of E would have runtime polylog(N log(N)2k),1036

which is DTIME[poly(n)]. This means that a uniformity algorithm AE running in time log(N)c = nc for1037

circuit E has time to evaluate circuits of size nc/3. Setting c > 3k would allow for the uniformity algorithm1038

to, after stages (1) and (2), evaluate the input (C, x) and give the output bits.1039

By Lemma 5.4, we have in V0
# a sequence of function symbols for generating the truth tables of fixed-1040

polynomial size general circuits given as input. This is feasible due to the input length N , where a fixed1041

polynomial is only polylog. Define the sequence of symbols TTb(C,N) as functions that take a number N1042

and circuit C of length |C| = |N |b and output the truth table of C of length N . These operations have1043

function symbols and defining axioms in V0
# because the polylog-uniform AC0 complexity will be N ·qpoly(N)1044

to evaluate the circuit C on each of the N possible inputs (by Lemma 5.4). We will also assert that TTb(·, ·)1045

checks if the input circuit is valid and of length |N |b, and treats it as the constant 0 function if it is not.1046

This is because verifying a DCL encoding can be done efficiently in AC0. We can now give the following1047

translation,1048

Hard(b) ≜ ∀N ∃X (|X| = N)∀D (|D| < N) TTb(D,N) ̸= X

The above formula makes a choice to rely on the function symbol TTb verifying that N is a power of two and1049

the circuit D is a valid circuit of size |N |b instead of explicitly verifying this outside of the function symbol.1050

We make this choice because we will need a WHUP for V0
#, and the cleanest presentation of such a WHUP1051

is given when TTb absorbs the circuit verification procedure. See the discussion on WHUPs below for more1052

detail.1053

Comparison to VAPC and Shannon Counting. The typical description of Shannon counting is that1054

there exists a truth table x of length N , which has circuit complexity N/ logN . It is this formulation1055

which Jeřábek showed is provable in VAPC. Our logical translation, however, is weaker: we only require1056

proving a schema that asserts a truth table with super-fixed-polynomial circuit complexity exists, rather1057

than exponential.1058

5.3 Round Elimination of the Student-Teacher Refuter1059

Student-Teacher Interpretation The structure of the Student-Teacher game is very similar to previous1060

sections. In each round, a polylog-uniform AC0[qpoly(N)] Student constructs a truth table X and queries1061

the Teacher. Every round that the Student is not correct, the Teacher will respond with a small circuit D1062

that succinctly represents X. Crucially, Teacher’s response (to be replaced with a SearchMCSP oracle) is of1063

length polylog(N) and computable in PH.1064

The round elimination strategy will be different from previous sections. We will show that the problem1065

of outputting the i-th bit of the Student-Teacher game is in fact in the polylog hierarchy polyLH, and use the1066

assumption P = NP to show that the output of the Student-Teacher game will have small circuit complexity.1067

We begin with a warm-up lemma.1068

Lemma 5.5 (Lemma 2.5, [11]). Assume P = NP. Then for every polylogtime-uniform AC0 algorithm A1069

which outputs n bits on input 1n, the output A(1n) has circuit complexity at most polylog(n).1070

Proof. Let D be the uniformity machine for AC0 algorithm A which on input n in binary and index i in1071

binary, reports the i-th bit of wire and gate information of An, the n-th AC0 circuit of family A. Let f(n, i)1072

be the function that outputs the i-th output bit of An(1
n). Notice that f is in PH: due to An being constant1073

depth, one can existentially and universally guess gate/wire information and verify it due to D. This means1074

the evaluation of f is in Σd-TIME[O(logd n)] for some constant d depending on the depth of circuit A and1075
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the polynomial time SAT algorithm. By assumption, P = PH, hence the evaluation of An(1
n) may be done1076

in deterministic polylogn time. It is standard to convert such a program to a circuit of polylog size.1077

The above lemma is a blueprint for the generalization to Student-Teacher games. Let φb denote the1078

quantifier-free part of Hard[b], to state1079

Lemma 5.6. Assume P = NP. Let r ∈ N be a constant. Then any polylog-uniform AC0[N (logN)k ]-STCX[φb,r]
1080

game for Hard[b] has output of circuit complexity log(N)m = nm on inputs 1N , for some m = m(k) > 0.1081

Furthermore, if k = O(1), then m = O(1).1082

Proof. We exactly follow the proof of Lemma 5.5 with one major modification: we must replace the oracle1083

gates/Teacher’s responses.1084

Let the Student S be an AC0
d [N

(logN)k ] counterexample oracle circuit with d > r and a uniformity1085

algorithm A(i, n) which runs in time (logN)q1 . As well, let P = NP be realized by a polynomial time SAT1086

algorithm of time nα. As SearchMCSP ∈ FNP there is by assumption a fixed polynomial p = p(N, |s(n)|),1087

for s(n) a size function s(n) < 2n/n, where SearchMCSP ∈ DTIME[p(N, s(n))]. With s(n) = nb, we have1088

that there is a LOGTIME-uniform circuit family {CN}N of size p(N)k solving SearchMCSP. By Lemma 5.4,1089

we can evaluate CN by a polylog-uniform AC0
3[N

log(N)3k ] circuit EN . Let the uniformity algorithm for E , AE ,1090

run in time (logN)q2 for some constant q2. From student S, we modify the oracle circuit, by replacing any1091

oracle gate by the circuit solving SearchMCSP(·, nb), EN , and all oracle output bits by the output bits of EN .1092

Denote this new circuit S∗.1093

By the same proof of Lemma 5.5, the output S∗(1N ) has circuit complexity (logN)m = nm, where1094

m = 100dαkmax(q1, q2). This follows by the repeated application of the polynomial time SAT algorithm,1095

and the substitution of EN into S for each Teacher oracle.1096

Finally, we will introduce a WHUP for V0
# in order to obtain an absolute Student-Teacher game for any1097

b ∈ N and Hard[b]. Proof-theoretic consequences will follow.1098

Witnessing Hypothesis. The structure of the schema Hard[b] is somewhat different from the schema1099

HiKt[c] for the existence of high Kpoly strings seen in Section 4. For Hard[b], we are substituting function1100

symbols instead of substituting runtimes, contrasting with our WHUP for VPV which substitutes runtimes1101

into a universal machine. Such a difference is natural when we go from reasoning with Turing machines to1102

reasoning with circuits. Another variation of WHUPs is required to handle varying function symbols.1103

Definition 5.7. A parametrized uniform circuit family {Cn(b)}n is a circuit family where the uniformity1104

algorithm A(i, n, b) takes in an index to the DCL i, the input length n, and an additional parameter b, all1105

represented in binary. Unless stated otherwise, we will only consider polylog-uniformity.1106

Definition 5.8. Fix a parametrized uniform AC0[qpoly] family C(b) = {Cn(b)}n and let fb(X) be the V0
#1107

function symbol which evaluates C on input X with parameter b for the uniformity machine. We say that1108

an infinite sequence of formulas Φ is a parametrized uniform schema if Φ is obtained by taking an infinite1109

union over parameter values of a parametrized uniform circuit family. Formally, let φ be a formula which1110

has a parametrized uniform function symbol fp. We denote φ(fp/b), b ∈ N to be “substituting” the value b1111

for the parameter p, where we use the function fb wherever f is named in φ. We set1112

Φ =
⋃
c∈N

φ(fp/c).

Outside the theory, this can be thought of as a substitution; all we are doing is substituting numerals into1113

the parameter of a uniformity algorithm. However, it is not a true term substitution in the object language,1114

as a first order theory cannot treat functions as free variables.1115

The following WHUP for V0
# strengthens the WHUP for VPV using parametrized uniform circuits.1116

Hypothesis 5.9 (V0
# Witnessing Hypothesis for Uniform Proofs). Suppose Φ =

⋃
c∈N φ(fp/c) is a parametrized1117

uniform schema with φ ∈ ΣB2 and V0
# ⊢ Φ. Then there is a finite sequence F1, . . . Fr of V

0
#-function symbols1118

such that, for infinitely many c,1119
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V0
# ⊢ ∀n ∀Y⃗1, . . . ,∀Y⃗r

(
φ(n, nc), F1(n, c), Y⃗1) ∨ φ(n, nc, F2(n, c, Y⃗1), Y⃗2)∨

· · · ∨ φ(n, nc, Fr(n, c, Y⃗1, . . . , Y⃗r−1), Y⃗r)
)

We are now ready to show our provability consequences for V0
#.1120

Theorem 5.10. Assume Hypothesis 5.9. If V0
# ⊢ Hard(b), for every b ∈ N, then P ̸= NP.1121

Proof. Because Hard[b] is a parametrized-uniform schema, under Hypothesis 5.9, there is a fixed polylog-1122

uniform AC0[qpoly(N)] student S for the Student-Teacher game of Hard(b), for infinitely many b ∈ N. For1123

sake of contradiction, assume P = NP. Let m = m(5.6) be the exponent in the circuit size of S(1N ), per1124

Lemma 5.6. Note that m is a constant. If b > m, then we have a contradiction, as the output S(1N ) will1125

have circuit complexity smaller than nb.1126

5.4 VPV# Proves Hard(b) for Every b1127

Before demonstrating that V0
# ⊢ Hard(b), we show as a conceptually simpler task that VPV# ⊢ Hard(b), for1128

an appropriate logical translation of weak Shannon counting in L(VPV)∪ {#}. The theory VPV# takes the1129

theory VPV and adds the functions symbols and defining axioms for | · |1 and #, where | · |1 gives the length1130

of a number, and # is the smash operator. With these additions, we have the following L(VPV#) logical1131

translation Hard(b),1132

∀n,N.(n = |N |1) ∃F.(|F | = N) ∀D.(|D| = nb) TT(D,N) ̸= F

We can prove weak Shannon counting in this theory by iterated halving, the classic procedure common1133

in learning algorithms. Let Cb be the set of Boolean circuits of size nb with n input bits. There are at most1134

2O(n
b logn) such circuits. If N = 2n, then this number is bounded by N#N#N · · ·#N , b + 1 many times.1135

Set C0b = Cb. We will proceed in rounds; in round i, we set1136

bi = arg min
b∈{0,1}

|{C ∈ Ci−1
k | TT(C)i = b}|

Cik = {C ∈ Ci−1
k | TT(C)i = bi}.

Clearly, |Cib| ≤ |C
i−1
b |/2, hence halving our search space. After r = |Cb| rounds, we will have 0 re-1137

maining circuits matching the truth table prefix b1b2 . . . br. If 0 circuits remain, then we have the answer1138

b1b2 . . . br0
N−r. As N is feasible in the translation Hard(b), computing bi each round is a feasible minimiza-1139

tion in VPV#. This step is feasible in VPV#, but not in V0
#. Finally, the rounds can be expressed as a ΣB01140

induction over the bits of the resulting truth table, where one existentially guesses a number b ∈ {0, 1}i in1141

round i < |N#N#N · · ·#N |1 which is the least popular truth table prefix generated by size nb circuits.1142

5.5 V0
# ⊢ Hard(b)1143

We give a proof sketch that, in fact, V0
# ⊢ Hard(b), for every b ∈ N. We need the following folklore theorem,1144

Theorem 5.11. [17] V0 proves the soundness of bounded depth Frege1145

Corollary 5.12. V0
# proves the soundness of quasipolynomial size bounded depth Frege.1146

Lemma 5.13. V0
# ⊢ Hard(b), for every b ∈ N.1147

Proof Sketch. It is known that depth-(0.5) Frege has quasipolynomial sized propositional proofs of the1148

dWPHP [39]. Further, these proofs are highly uniform, in the sense that you can give a direct connection1149

language for the proofs, as you would for circuits, and this language would be polylog-uniform AC0[poly].1150

A V0
# proof of Hard(b) would simply verify the soundness of the bounded depth Frege proof of dWPHP,1151

substituting each propositional variable xC,T with the assertion that the truth table of the circuit C of size1152

nb is T .1153
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This proof method is likely not the easiest method; a more straightforward way would be directly taking1154

the bounded arithmetic proof of dWPHP(Σb1(α)) in Buss’s theory T 2
2 (α), and reformulating it as a proof in1155

V0, replacing the uninterpreted oracle symbol α with V0 function symbols.1156

We then get as a corollary the surprising consequence,1157

Corollary 5.14. If Hypothesis 5.9 is true, then P ̸= NP.1158
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[28] Jan Kraj́ıček. No counter-example interpretation and interactive computation. In Logic from Computer1230

Science: Proceedings of a Workshop held November 13–17, 1989, pages 287–293. Springer, 1992.1231
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[33] Jan Kraj́ıček, Pavel Pudlák, and Gaisi Takeuti. Bounded arithmetic and the polynomial hierarchy.1240

Annals of pure and applied logic, 52(1-2), 1991.1241

[34] Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications, 4th1242

Edition. Texts in Computer Science. Springer, 2019.1243

[35] Zeyong Li. Symmetric exponential time requires near-maximum circuit size: Simplified, truly uniform.1244

In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, pages 2000–2007, 2024.1245

[36] Yanyi Liu and Rafael Pass. On one-way functions and kolmogorov complexity. In Sandy Irani, editor,1246

61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA,1247

November 16-19, 2020, pages 1243–1254. IEEE, 2020.1248

[37] Yanyi Liu and Rafael Pass. A direct PRF construction from kolmogorov complexity. In Marc Joye and1249

Gregor Leander, editors, Advances in Cryptology - EUROCRYPT 2024 - 43rd Annual International1250

Conference on the Theory and Applications of Cryptographic Techniques, Zurich, Switzerland, May 26-1251

30, 2024, Proceedings, Part IV, volume 14654 of Lecture Notes in Computer Science, pages 375–406.1252

Springer, 2024.1253

[38] Wolfgang Maass. Quadratic lower bounds for deterministic and nondeterministic one-tape turing ma-1254

chines. In Proceedings of the sixteenth annual ACM symposium on Theory of computing, pages 401–408,1255

1984.1256

[39] Alexis Maciel, Toniann Pitassi, and Alan R Woods. A new proof of the weak pigeonhole principle. In1257

Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pages 368–377,1258

2000.1259

[40] Tohru Miyatake. On the length of proofs in formal systems. Tsukuba Journal of Mathematics, 4(1):115–1260

125, 1980.1261

[41] Moritz Müller and Ján Pich. Feasibly constructive proofs of succinct weak circuit lower bounds. Annals1262

of Pure and Applied Logic, 171(2):102735, 2020.1263

[42] Cody Murray and Ryan Williams. Circuit lower bounds for nondeterministic quasi-polytime: an easy1264

witness lemma for np and nqp. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory1265

of Computing, pages 890–901, 2018.1266

[43] Igor C Oliveira. Meta-mathematics of computational complexity theory. SIGACT News Complexity1267

Theory Column (DRAFT).1268

[44] Rohit Parikh. Existence and feasibility in arithmetic. The journal of symbolic logic, 36(3):494–508,1269

1971.1270

[45] Rohit Parikh. Some results on the length of proofs. Transactions of The American Mathematical Society1271

- TRANS AMER MATH SOC, 177:29–29, 03 1973.1272

[46] Ján Pich. Circuit lower bounds in bounded arithmetics. Annals of Pure and Applied Logic, 166(1):29–45,1273

2015.1274

[47] Ján Pich. Logical strength of complexity theory and a formalization of the PCP theorem in bounded1275

arithmetic. Log. Methods Comput. Sci., 11(2), 2015.1276

[48] Pavel Pudlák. Chapter viii - the lengths of proofs. In Samuel R. Buss, editor, Handbook of Proof Theory,1277

volume 137 of Studies in Logic and the Foundations of Mathematics, pages 547–637. Elsevier, 1998.1278

[49] Hanlin Ren, Rahul Santhanam, and Zhikun Wang. On the range avoidance problem for circuits. In1279

2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 640–650.1280

IEEE, 2022.1281

32



[50] Neil Thapen. The weak pigeonhole principle in models of bounded arithmetic. PhD thesis, University of1282

Oxford, 2002.1283

[51] Ryan Williams. Nonuniform acc circuit lower bounds. Journal of the ACM (JACM), 61(1):1–32, 2014.1284

33


	Introduction
	Algorithmic Constructivity in Complexity Theory
	Our Results: Student-Teacher Constructive Separations
	Proof Theoretic Constructivity in Complexity Theory
	Our Results: Consequences in Bounded Arithmetic
	Our Techniques.
	Comparison to Other Work.
	Open Problems.
	Paper Organization.

	Preliminaries
	Circuit Uniformity
	Basic Logic and Terminology
	Peano Arithmetic
	Theories of Bounded Arithmetic
	Witnessing Theorems in Bounded Arithmetic
	Student Teacher Games and Refuters
	Time-Bounded Kolmogorov Complexity

	Provability of Palindromes Lower Bounds
	Formalization of One-Tape Nondeterministic Turing Machine Lower Bounds
	Constructive Separations for Palindromes
	Round Elimination for the Student-Teacher Refuter

	Existence of Kt-Random Strings
	Student-Teacher-Search Lower Bounds for Kt-Random Strings
	Gap Between Student-Teacher Search Lower Bounds & VPV-Unprovability
	Kriesel's Conjecture & Witnessing Hypotheses for Uniform Proofs
	Conditional Unprovability of HiKt[c] in VPV and V1
	Examples of Schemata With ``Uniform'' Proofs & Absolute Witnessing
	Machine Templates
	Deterministic Time Hierarchy Theorem
	Efficient Conversion From Multi-Tape to One-Tape Turing Machines


	Consequences of Provably Hard Truth Tables
	A Theory for AC0[qpoly]-Reasoning
	Stating Existential Circuit Lower Bounds in L(V0#)
	Round Elimination of the Student-Teacher Refuter
	VPV# Proves Hard(b) for Every b
	V0#Hard(b)

	Acknowledgements

